A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: preparation and characterization. 1996

P F Wang, and D M Veine, and S H Ahn, and C H Williams
Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48105, USA.

The flavoenzyme thioredoxin reductase (TrR) catalyzes the reduction of the small redox protein thioredoxin (Tr) by NADPH. It has been proposed that a large conformational change is required in catalysis by TrT in order to visualize a complete pathway for reduction of equivalents. The proposal is based on the comparison of the crystal structures of TrR and glutathione reductase, the latter being a well-understood member of the enzyme family [Waksman, G., et al. (1994) J. Mol. Biol. 236, 800-816]. Bound NADPH is perfectly positioned for electron transfer to the FAD in glutathione reductase, but in TrR, these two components are 17 angstroms apart. In order to provide evidence for the proposed conformational change, a complex between TrR and its substrate Tr involving a mixed disulfide between TrR and Tr was prepared. The redox active disulfide of TrR is composed of Cys135 and Cys138, and the redox active disulfide of Tr is made up of Cys32 and Cys35. The complex C135S-C32S is prepared from forms of TrR and Tr altered by site-directed mutagenesis where Cys138 and Cys35 are remaining in TrR and Tr, respectively. The purified C135S-C32S presents a band on a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis responding to a molecular weight sum of one subunit of TrR and one of Tr. Several observations indicate that C135S-C32S can adopt only one conformation. It was reported previously that TrR C135S can form a charge transfer complex in the presence of ammonium cation in which the donor is the remaining thiolate of Cys138 [Prongay, A.J., et al., (1989) J. Biol. Chem. 264, 2656-2664], while titration of C135S-C32S with NH4Cl does not induce charge transfer, presumably because Cys138 is participating in the mixed dissulfide. Reduction of C135S-C32S with dithiothreitol (DTT) results in a decrease of epsilon454 to a value similar to that of TrR C135S, and subsequent NH4Cl titration leads to charge transfer complex formation in the nascent TrR C135S. Reductive titrations show that approximately 1 equiv of sodium dithionite or NADPH is required to fully reduce C135S-C32S, and treatment with NH4Cl and DTT demonstrates that the mixed disulfide between Cys138 of TrR C135S and Cys35 of TrC32S that locks the structure in a conformation where FAD can be reduced by NADPH, but electrons cannot flow from FADH2 to the mixed disulfide bond.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013879 Thioredoxins Hydrogen-donating proteins that participates in a variety of biochemical reactions including ribonucleotide reduction and reduction of PEROXIREDOXINS. Thioredoxin is oxidized from a dithiol to a disulfide when acting as a reducing cofactor. The disulfide form is then reduced by NADPH in a reaction catalyzed by THIOREDOXIN REDUCTASE. Thioredoxin,Thioredoxin 1,Thioredoxin 2,Thioredoxin-1,Thioredoxin-2
D013880 Thioredoxin-Disulfide Reductase A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5 Thioredoxin Reductase (NADPH),NADP-Thioredoxin Reductase,NADPH-Thioredoxin Reductase,Thioredoxin Reductase,NADP Thioredoxin Reductase,NADPH Thioredoxin Reductase,Reductase, NADP-Thioredoxin,Reductase, NADPH-Thioredoxin,Reductase, Thioredoxin,Reductase, Thioredoxin-Disulfide,Thioredoxin Disulfide Reductase
D017186 Titrimetry The determination of the concentration of a given component in solution (the analyte) by addition of a liquid reagent of known strength (the titrant) until an equivalence point is reached (when the reactants are present in stoichiometric proportions). Often an indicator is added to make the equivalence point visible (e.g., a change in color).

Related Publications

P F Wang, and D M Veine, and S H Ahn, and C H Williams
June 1990, The Journal of biological chemistry,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
August 2009, PLoS computational biology,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
June 2002, Proceedings of the National Academy of Sciences of the United States of America,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
March 1967, The Journal of biological chemistry,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
January 1999, Methods in enzymology,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
June 2008, Journal of molecular biology,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
January 2014, Current protein & peptide science,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
December 1982, Biochemistry,
P F Wang, and D M Veine, and S H Ahn, and C H Williams
October 2002, The Biochemical journal,
Copied contents to your clipboard!