Air pollution and hospital admissions for respiratory disease. 1996

J Schwartz
Environmental Epidemiology Program, Harvard School of Public Health, Boston, MA 02115, USA.

Several recent studies have reported associations between short-term changes in air pollution and respiratory hospital admissions. Most of those studies analyzed locations where there was a high correlation between airborne particles and sulfur dioxide (SO2), and between all air pollutants and temperature. Here, I seek to replicate the previous findings in a location where SO2 concentrations were trivial, and the correlation between both airborne particles and ozone with temperature was considerably lower than in previous studies. I constructed daily counts of admissions to all hospitals in Spokane, WA, for respiratory disease (International Classification of Diseases, 9th revision, codes 460-519) for persons age 65 years and older. I computed average daily concentrations of airborne particles whose diameter is 10 microns or less (PM10) and ozone (O3) from all monitors in each city, and I obtained daily average temperature and humidity from the U.S. weather service. SO2 concentrations in Spokane were so low that monitoring was discontinued. I regressed daily respiratory admission counts on temperature, humidity, day of the week indicators, and air pollution. I used a Poisson regression analysis and removed long wavelength patterns using a nonparametric smooth function of day of study. I dealt with a possible U-shaped dependence of admissions on temperature and/or humidity by using nonparametric smooth functions of weather variables as well. I then examined sensitivity analyses to control for weather. Both PM10 and ozone were associated with increased risk of respiratory hospital admissions [relative risk (RR) = 1.085; 95% confidence interval (CI) = 1.036-1.136 for a 50-microgram per m3 increase in PM10, and RR = 1.244; 95% CI = 1.002-1.544 for a 50-microgram per m3 increase in peak-hour ozone]. The PM10 association was insensitive to alternative methods of control for weather, including exclusion of extreme temperature days and control for temperature on multiple days. The ozone results were more sensitive to the approach for weather control. The magnitude of the PM10 effect in this location, where SO2 was essentially not present, and where the correlation between PM10 and temperature was close to zero, was similar to that reported in other locations in the eastern United States and Europe, where confounding by weather and SO2 is a more substantial concern.

UI MeSH Term Description Entries
D008173 Lung Diseases, Obstructive Any disorder marked by obstruction of conducting airways of the lung. AIRWAY OBSTRUCTION may be acute, chronic, intermittent, or persistent. Obstructive Lung Diseases,Obstructive Pulmonary Diseases,Lung Disease, Obstructive,Obstructive Lung Disease,Obstructive Pulmonary Disease,Pulmonary Disease, Obstructive,Pulmonary Diseases, Obstructive
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011014 Pneumonia Infection of the lung often accompanied by inflammation. Experimental Lung Inflammation,Lobar Pneumonia,Lung Inflammation,Pneumonia, Lobar,Pneumonitis,Pulmonary Inflammation,Experimental Lung Inflammations,Inflammation, Experimental Lung,Inflammation, Lung,Inflammation, Pulmonary,Inflammations, Lung,Inflammations, Pulmonary,Lobar Pneumonias,Lung Inflammation, Experimental,Lung Inflammations,Lung Inflammations, Experimental,Pneumonias,Pneumonias, Lobar,Pneumonitides,Pulmonary Inflammations
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D012140 Respiratory Tract Diseases Diseases involving the RESPIRATORY SYSTEM. Respiratory Diseases,Respiratory System Diseases,Disease, Respiratory System,Disease, Respiratory Tract,Respiratory System Disease,Respiratory Tract Disease
D004391 Dust Earth or other matter in fine, dry particles. (Random House Unabridged Dictionary, 2d ed) House Dust,Housedust,Dust, House
D006760 Hospitalization The confinement of a patient in a hospital. Hospitalizations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

J Schwartz
March 1998, Epidemiology (Cambridge, Mass.),
J Schwartz
June 2001, The European respiratory journal,
J Schwartz
February 2014, Environmental pollution (Barking, Essex : 1987),
J Schwartz
October 1999, Occupational and environmental medicine,
J Schwartz
February 2008, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
Copied contents to your clipboard!