Effects of the nonsteroidal anti-inflammatory drug piroxicam on rat liver mitochondria. 1996

C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
Department of Biochemistry, University of Maringá, Brazil.

1. The effects of piroxicam, a nonsteroidal anti-inflammatory drug, on rat liver mitochondria were investigated in order to obtain direct evidence about a possible uncoupling effect, as suggested by a previous work with the perfused rat liver. 2. Piroxicam increased respiration in the absence of exogenous ADP and decreased respiration in the presence of exogenous ADP, the ADP/O ratios and the respiratory control ratios. 3. The ATPase activity of intact mitochondria was increased by piroxicam. With 2,4-dinitrophenol uncoupled mitochondria, inhibition was observed. The ATPase activity of freeze-thawing disrupted mitochondria was insensitive to piroxicam. 4. Swelling driven by the oxidation of several substrates and safranine uptake induced by succinate oxidation were inhibited. 5. The results of this work represent a direct evidence that piroxicam acts as an uncoupler, thus, decreasing mitochondrial ATP generation.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008933 Mitochondrial Swelling An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010619 Phenazines

Related Publications

C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
January 1987, Cutis,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
July 2003, The Journal of clinical psychiatry,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
March 1989, Biochemical pharmacology,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
November 1977, Biochemical pharmacology,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
January 1996, Diseases of the colon and rectum,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
January 2018, Biological & pharmaceutical bulletin,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
January 2005, Digestive diseases and sciences,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
April 1999, Pharmacology,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
January 1982, Pharmacotherapy,
C L Salgueiro-Pagadigorria, and A M Kelmer-Bracht, and A Bracht, and E L Ishii-Iwamoto
February 2010, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association,
Copied contents to your clipboard!