The relationship between sequence-specific termination of DNA replication and transcription. 1996

B K Mohanty, and T Sahoo, and D Bastia
Department of Microbiology, Duke University Medical Centre, Durham, NC 27710, USA.

In Escherichia coli and Bacillus subtilis replication fork arrest occurs in the terminus at sequence-specific sites by the binding of replication terminator proteins to the fork arrest sites. The protein-DNA complex causes polar arrest of the replication forks by inhibiting the activity of the replicative helicases in only one orientation of the terminus with respect to the replication origin. This activity has been named as polar contrahelicase. In this paper we report on a second novel activity of the terminator proteins of E.coli and B.subtilis, namely the ability of the proteins to block RNA chain elongation by several prokaryotic RNA polymerases in a polar mode. The replication terminator proteins ter and RTP of E.coli and B.subtilis respectively, impeded RNA chain elongation catalyzed by T7, SP6 and E.coli RNA polymerases in a polar mode at the replication arrest sites. The RNA chain anti-elongation and the contrahelicase activities were isopolar. Whereas one monomer of ter was necessary and sufficient to block RNA chain elongation, two interacting dimers of RTP were needed to effect the same blockage. The biological significance of the RNA chain anti-elongation activity is manifested in the functional inactivation of a replication arrest site by invasion of RNA chains from outside, and the consequent need to preserve replication arrest activity by restricting the passage of transcription through the terminus-terminator protein complex.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

B K Mohanty, and T Sahoo, and D Bastia
April 1986, Molecular and cellular biology,
B K Mohanty, and T Sahoo, and D Bastia
September 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
B K Mohanty, and T Sahoo, and D Bastia
October 2001, Biochemistry,
B K Mohanty, and T Sahoo, and D Bastia
May 1989, Proceedings of the National Academy of Sciences of the United States of America,
B K Mohanty, and T Sahoo, and D Bastia
January 2004, Nucleic acids research,
B K Mohanty, and T Sahoo, and D Bastia
July 2016, PLoS genetics,
B K Mohanty, and T Sahoo, and D Bastia
January 2019, Nature structural & molecular biology,
B K Mohanty, and T Sahoo, and D Bastia
February 2024, bioRxiv : the preprint server for biology,
B K Mohanty, and T Sahoo, and D Bastia
April 1986, Molecular & general genetics : MGG,
Copied contents to your clipboard!