Effects of a physiological insulin concentration on the endothelin-sensitive Ca2+ store in porcine coronary artery smooth muscle. 1996

G M Dick, and M Sturek
Vascular Biology Laboratory, Dalton Cardiovascular Research Center, University of Missouri, Columbia 65211, USA.

The effect of insulin to attenuate the Ca2+ and contractile response of vascular smooth muscle to a number of agonists has been described previously, but the Ca2+ regulatory mechanisms of insulin action remain unclear. We determined the effect of a physiological insulin concentration (300 pmol/l) on the Ca2+ response of vascular smooth muscle cells of the porcine right coronary artery to endothelin 1 (ET-1); furthermore, we examined the cellular Ca2+ stores affected by insulin (i.e., Ca2+ stores releasable by inositol 1,4,5-trisphosphate, caffeine, and ionomycin). We measured the Ca2+ responses of acutely isolated single smooth muscle cells with the fluorescent Ca2+ indicator Fura-2. Acute insulin exposure (20 min) significantly attenuated the Ca2+ response of single smooth muscle cells to 10 nmol/l ET-1. This inhibitory effect of insulin was observed both in the presence and absence of extracellular Ca2+. In contrast with the effects on ET-1-induced Ca2+ responses, insulin did not inhibit the Ca2+ response to 5 mmol/l caffeine, an agent that directly releases sarcoplasmic reticulum Ca2+ stores. Insulin was also without effect on the total cellular Ca2+ store released by 1 micromol/l ionomycin, a Ca2+-transporting ionophore. When ET-1 and caffeine were given in succession, a sizable caffeine-sensitive Ca2+ store could be released from insulin-treated cells but not control cells, indicating that the sarcoplasmic reticulum Ca2+ store of insulin-treated cells was not depleted by ET-1. Generalized depletion of the sarcoplasmic reticulum Ca2+ store is not one of the cellular mechanisms involved in the effect of insulin on coronary smooth muscle; instead, the effect may be due to an inhibitory influence on transmembrane signal transduction, such as diminished ET-1-induced inositol 1,4,5-trisphosphate production or reduced ability of this phosphoinositol to release stored Ca2+.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

G M Dick, and M Sturek
October 1992, British journal of pharmacology,
G M Dick, and M Sturek
May 2004, American journal of physiology. Lung cellular and molecular physiology,
G M Dick, and M Sturek
December 1994, Circulation research,
G M Dick, and M Sturek
February 2008, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!