Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. 1996

M Morohoshi, and K Fujisawa, and I Uchimura, and F Numano
Third Department of Internal Medicine, Tokyo Medical and Dental University, Japan.

To clarify the mechanisms that cause elevation of plasma fibrinogen levels in diabetes, we first examined the effect of hyperglycemia on the production of interleukin 6 (IL-6) and tumor necrosis factor (TNF) by cultured human peripheral blood monocytes. Monocyte-enriched fractions isolated from 20 healthy volunteers were incubated with 11 mmol/l glucose, 33 mmol/l glucose, or mannitol as an osmolar control for 6 or 24 h. After 6 h of incubation, IL-6 and TNF-alpha mRNA levels were analyzed by reverse transcription and polymerase chain reaction. In addition, after 24 h of incubation, IL-6 and TNF-alpha immunoreactivity in the culture medium was measured by enzyme-linked immunoassay. Both IL-6 and TNF-alpha mRNA levels and immunoreactivity were significantly increased by treatment with 33 mmol/l glucose compared with treatment with 11 mmol/l glucose or 11 mmol/l glucose with 22 mmol/l mannitol. In addition, preincubation of the cells with an anti-TNF monoclonal antibody (mAb) blocked the stimulatory effect of 33 mmol/l glucose on IL-6 synthesis and secretion. Second, we examined the ability of conditioned media from human peripheral blood monocytes to stimulate beta-fibrinogen mRNA synthesis in HepG2 cells. The conditioned medium from monocytes treated with 33 mmol/l glucose increased beta-fibrinogen mRNA levels. The results of this study demonstrate that hyperglycemia stimulated IL-6 and TNF synthesis and secretion by human peripheral monocytes in vitro and that the IL-6 response to hyperglycemia may be mediated by TNF. Furthermore, hyperglycemia may increase fibrinogen levels through stimulation of peripheral monocytes. These results suggest that hyperglycemia may cause hyperfibrinogenemia in diabetic patients through an IL-6-dependent and TNF-dependent mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Morohoshi, and K Fujisawa, and I Uchimura, and F Numano
March 1990, Blood,
M Morohoshi, and K Fujisawa, and I Uchimura, and F Numano
August 2000, Immunopharmacology and immunotoxicology,
M Morohoshi, and K Fujisawa, and I Uchimura, and F Numano
July 1988, Journal of immunology (Baltimore, Md. : 1950),
M Morohoshi, and K Fujisawa, and I Uchimura, and F Numano
October 1993, The Journal of clinical endocrinology and metabolism,
M Morohoshi, and K Fujisawa, and I Uchimura, and F Numano
February 1990, International journal of cancer,
Copied contents to your clipboard!