Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies. 1996

J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
Department of Medical Biochemistry, School of Medicine, Southern Illinois University, Carbondale, 62901-4413, USA.

The thermodynamics of the binding of the Sac7d protein of Sulfolobus acidocaldarius to double-stranded DNA has been characterized using spectroscopic signals arising from both the protein and the DNA. Ligand binding density function analysis has been used to demonstrate that the fractional change in protein intrinsic tryptophan fluorescence quenching that occurs upon DNA binding is equal to the fraction of protein bound. Reverse titration data have been fit directly to the McGhee-von Hippel model [McGhee, J., & von Hippel, P. (1974) J. Mol. Biol. 86, 469-489] using nonlinear regression. Sac7d binds noncooperatively to poly(dGdC) x poly(dGdC) with an intrinsic affinity of 6.5 x 10(6) M(-1) and a site size of 4 base pairs in 1 mM KH2PO4 and 50 mM KC1 (pH 6.8). Some binding sequence preference is noted, with the binding to poly(dIdC) x poly(dIdC) over 10-fold stronger than to poly(DAdT) x poly(dAdT). The binding is largely driven by the polyelectrolyte effect and is consistent with a release of 4.4 monovalent cations from DNA upon complex formation or the formation of 5 ion pairs at the protein-DNA interface. Extrapolation of salt back-titration data to 1 M KC1 indicates a -2.2 kcal/mol nonelectrostatic contribution to the binding free energy. A van't Hoff analysis of poly(dGdC) x poly(dGdC) binding shows that the binding enthalpy is approximately zero and the process is entropically driven. The affinity decreases slightly between pH 5.4 and 8.0. There is no significant difference between the binding parameters of recombinant Sac7d and native Sac7 proteins, indicating that methylation of the native protein has no effect on the DNA binding function. The binding of Sac7d to various DNAs leads to a significant increase in the DNA long-wavelength circular dichroism (CD) band, the intensity of which shows a sigmoidal dependence on Sac7d concentration. The sigmoidal CD binding isotherm can be quantitatively modeled by a conformational transition in the DNA that is cooperatively induced when protein monomers are bound within a given number of base pairs, ranging from zero for poly(dIdC) x poly(dIdC) to 8 or less for poly(dAdG) x poly(dCdT).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011089 Polydeoxyribonucleotides A group of 13 or more deoxyribonucleotides in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Polydeoxyribonucleotide
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
October 1995, Biochemistry,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
October 2004, Biochemistry,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
January 2001, Methods in enzymology,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
October 2004, Journal of molecular biology,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
October 2005, Biochemistry,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
March 1998, Nature,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
February 2004, Journal of biomolecular structure & dynamics,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
December 1996, Journal of molecular biology,
J G McAfee, and S P Edmondson, and I Zegar, and J W Shriver
January 1999, Journal of molecular biology,
Copied contents to your clipboard!