Calcium modulation of bovine photoreceptor guanylate cyclase. 1996

T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford 08084, USA.

Bovine photoreceptor guanylate cyclase (ROS-GC) consists of a single transmembrane polypeptide chain with extracellular and intracellular domains. In contrast to non-photoreceptor guanylate cyclases (GCs) which are activated by hormone peptides, ROS-GC is modulated in low Ca2+ by calmodulin-like Ca(2+)-binding proteins termed GCAPs (guanylate cyclase-activating proteins). In this communication we show that, like the native system, ROS-GC expressed in COS cells is activated 4-6-fold by recombinant GCAP1 at 10 nM Ca2+ and that the reconstituted system is inhibited at physiological levels of Ca2+ (1 microM). A mutant ROS-GC in which the extracellular domain was deleted was stimulated by GCAP1 indistinguishable from native ROS-GC indicating that this domain is not involved in Ca2+ modulation. Deletion of the intracellular kinase-like domain diminished the stimulation by GCAP1, indicating that this domain is at least in part involved in Ca2+ modulation. Replacement of the catalytic domain in a non-photoreceptor GC by the catalytic domain of ROS-GC yielded a chimeric GC that was sensitive to ANF/ATP and to a lesser extent to GCAP1. The results establish that GCAP1 acts at an intracellular domain, suggesting a mechanism of photoreceptor GC stimulation fundamentally distinct from hormone peptide stimulation of other cyclase receptors.

UI MeSH Term Description Entries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D006162 Guanylate Cyclase An enzyme that catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate. It also acts on ITP and dGTP. (From Enzyme Nomenclature, 1992) EC 4.6.1.2. Guanyl Cyclase,Deoxyguanylate Cyclase,Guanylyl Cyclase,Inosinate Cyclase,Cyclase, Deoxyguanylate,Cyclase, Guanyl,Cyclase, Guanylate,Cyclase, Guanylyl,Cyclase, Inosinate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
January 1996, Biochemical and biophysical research communications,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
April 1991, The EMBO journal,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
May 1991, The Journal of biological chemistry,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
May 2003, Biochemistry,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
January 2002, Molecular and cellular biochemistry,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
August 1995, Protein expression and purification,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
July 1996, Journal of cell science,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
January 2003, Acta biochimica Polonica,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
April 1997, Biochemistry,
T Duda, and R Goraczniak, and I Surgucheva, and M Rudnicka-Nawrot, and W A Gorczyca, and K Palczewski, and A Sitaramayya, and W Baehr, and R K Sharma
October 1996, The Journal of biological chemistry,
Copied contents to your clipboard!