Intracellular binding of niflumic acid in the perfused rat liver was analyzed according to the model of Scatchard. The data for the binding isotherm were obtained from previously published indicator dilution experiments. The intracellular bound niflumic acid was calculated as the difference between total concentration and the concentration of the free form. The intracellular concentration of the free form was inferred from the concentration of the free form in the extracellular space under the assumption of equilibrative distribution. A Scatchard model with two classes of binding sites fits very well to the experimental curve. The high affinity class has a dissociation constant of 26.10 +/- 0.69 microM and a maximal binding capacity of 2.21 +/- 0.03 micromol (ml intracellular space)(-1); the low affinity class has a dissociation constant of 721.90 +/- 229.0 microM and a maximal binding capacity of 5.96 +/- 0.67 micromol (ml intracellular space)(-1). Probably, under in vivo conditions, the binding capacity in the cellular space exceeds that of the extracellular space. This phenomenon explains, partly at least, the high intracellular concentrations of niflumic acid found under in vivo conditions.