Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. 1996

J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.

Acquisition of iron from lactoferrin and transferrin by a parasitic protozoon Tritrichomonas foetus has been studied in vitro. Specific, time-dependent, and saturable binding of iodinated ligands to the outer membrane of T. foetus at 4 degrees C was demonstrated for 125I-labeled lactoferrin only. About 1.7 x 10(5) binding sites of a single class with Kd approximately equal to 3.6 microM was estimated by means of Scatchard analysis. Internalization of the bound lactoferrin was observed at 37 degrees C. The cell-associated radioactivity after 30 min incubation of the parasite with 125I-lactoferrin at 37 degrees C was about 3.5-fold higher than the amount bound at 4 degrees C. The majority of internalized 125I-lactoferrin was released within 15 min of cell reincubation at 37 degrees C in the presence of a 100-fold excess of nonlabeled lactoferrin. Released lactoferrin displayed unchanged mobility on autoradiography. In contrast to lactoferrin, binding of 125I-transferrin was nonspecific and did not display saturable kinetics. The growth of T. foetus in iron-restricted media was stimulated by both lactoferrin and transferrin. The ability of the cells to remove and accumulate iron from both proteins was therefore examined using 59Fe-saturated lactoferrin and transferrin. It was found that trichomonads acquired a comparable amount of iron from both lactoferrin and transferrin during 60 min incubation at 37 degrees C (495 and 577 pmole Fe/mg of protein, respectively). The pH of the assay medium (PBS) decreased from pH 7.4 to 5.6 after incubation with trichomonads. At this pH, marked release of iron from transferrin (up to 47%) but not from lactoferrin (4%) was determined in cell-free media. These results indicate that T. foetus is able to utilize both lactoferrin and transferrin to cover its iron requirements. However, mechanisms of iron acquisition from these host proteins appear to be different. Specific binding and internalization of lactoferrin suggests the possible involvement of receptor-mediated endocytosis in the acquisition of lactoferrin-bound iron, while retrieval of iron from transferrin may depend on the extracellular release of iron from this ligand.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007502 Iron Chelating Agents Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems. Iron Chelates,Agents, Iron Chelating,Chelates, Iron,Chelating Agents, Iron
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D009571 Nitrilotriacetic Acid A derivative of acetic acid, N(CH2COOH)3. It is a complexing (sequestering) agent that forms stable complexes with Zn2+. (From Miall's Dictionary of Chemistry, 5th ed.) Aluminum Nitrilotriacetate,Dysprosium Nitrilotriacetate,Trisodium Nitrilotriacetate,Acid, Nitrilotriacetic,Nitrilotriacetate, Aluminum,Nitrilotriacetate, Dysprosium,Nitrilotriacetate, Trisodium
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
October 2001, The Journal of parasitology,
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
July 1997, Microbiology (Reading, England),
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
August 2002, Journal of immunology (Baltimore, Md. : 1950),
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
August 1994, Infection and immunity,
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
July 2016, Parasitology,
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
December 2004, Microbiology (Reading, England),
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
November 2006, The Veterinary clinics of North America. Food animal practice,
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
May 1984, Molecular and biochemical parasitology,
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
June 2023, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
J Tachezy, and J Kulda, and I Bahníková, and P Suchan, and J Rázga, and J Schrével
April 1988, Infection and immunity,
Copied contents to your clipboard!