Protective effect of the 5-lipoxygenase inhibitor AA-861 on cerebral edema after transient ischemia. 1996

M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
Department of Neurological Surgery, University of Wisconsin Clinical Science Center, Madison, USA.

This study examined the effect of AA-861, a specific 5-lipoxygenase inhibitor, on brain levels of leukotriene C4 (LTC4) and correlated any changes with changes in edema formation and cerebral blood flow (CBF) after transient ischemia in gerbils. Brain levels of LTC4 were observed to be increased at 1, 2, and 6 hours of reperfusion following 20 minutes of occlusion. At 2 hours of reperfusion, a pretreatment dose of 1000 mg/kg of AA-861 was required to inhibit more than 90% of the reperfusion-induced increases in brain LTC4. At this dose, inhibition of LTC4 production was observed at 2 and 6 hours of reperfusion. The specific gravity of both the cortex and subcortex was decreased at 6 hours of reperfusion after 20 minutes of occlusion. At 2 hours of reperfusion, no significant difference was observed in the specific gravity of the cortex and subcortex regions of gerbils pretreated with AA-861 or with vehicle, but at 6 hours of reperfusion significant positive differences were observed. Cerebral blood flow decreased to approximately 10% of preocclusion values during occlusion and returned to near-preocclusion values after 10 minutes of reperfusion. No significant differences were observed in regional CBF in the AA-861- and vehicle-pretreated gerbils during reperfusion. These findings indicate that LTC4 production after transient cerebral ischemia may be an important contributor to the development of cerebral edema and that CBF does not mediate the LTC4-involved development of edema.

UI MeSH Term Description Entries
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016227 Benzoquinones Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. 1,2-Benzoquinones,1,4-Benzoquinones,Benzodiones,2,5-Cyclohexadiene-1,4-Diones,o-Benzoquinones,p-Benzoquinones
D016859 Lipoxygenase Inhibitors Compounds that bind to and inhibit that enzymatic activity of LIPOXYGENASES. Included under this category are inhibitors that are specific for lipoxygenase subtypes and act to reduce the production of LEUKOTRIENES. 5-Lipoxygenase Inhibitor,Lipoxygenase Inhibitor,12-Lipoxygenase Inhibitors,15-Lipoxygenase Inhibitors,5-Lipoxygenase Inhibitors,Arachidonate 12-Lipoxygenase Inhibitors,Arachidonate 15-Lipoxygenase Inhibitors,Arachidonate 5-Lipoxygenase Inhibitors,Inhibitors, Lipoxygenase,12 Lipoxygenase Inhibitors,12-Lipoxygenase Inhibitors, Arachidonate,15 Lipoxygenase Inhibitors,15-Lipoxygenase Inhibitors, Arachidonate,5 Lipoxygenase Inhibitor,5 Lipoxygenase Inhibitors,5-Lipoxygenase Inhibitors, Arachidonate,Arachidonate 12 Lipoxygenase Inhibitors,Arachidonate 15 Lipoxygenase Inhibitors,Arachidonate 5 Lipoxygenase Inhibitors,Inhibitor, 5-Lipoxygenase,Inhibitor, Lipoxygenase,Inhibitors, 12-Lipoxygenase,Inhibitors, 15-Lipoxygenase,Inhibitors, 5-Lipoxygenase,Inhibitors, Arachidonate 12-Lipoxygenase,Inhibitors, Arachidonate 15-Lipoxygenase,Inhibitors, Arachidonate 5-Lipoxygenase

Related Publications

M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
June 1993, International journal of pancreatology : official journal of the International Association of Pancreatology,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
December 1983, Prostaglandins,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
January 1985, Advances in prostaglandin, thromboxane, and leukotriene research,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
July 1988, Japanese journal of pharmacology,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
September 1990, Neurological research,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
July 1989, Arerugi = [Allergy],
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
January 1988, Journal of clinical & laboratory immunology,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
January 1985, Advances in prostaglandin, thromboxane, and leukotriene research,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
January 1987, Advances in prostaglandin, thromboxane, and leukotriene research,
M K Baskaya, and Y Hu, and D Donaldson, and M Maley, and A M Rao, and M R Prasad, and R J Dempsey
January 1986, International archives of allergy and applied immunology,
Copied contents to your clipboard!