[Cholinoreception in the ambulacral legs of the starfish Asterias rubens]. 1977

N E Babskaia

Muscles of the ambulacral legs of the starfish A. rubens are sensitive to the effect of ACh, reacting to its injection by shortening of the contracture type. Amplitude of the contractile response is directly related to ACh concentration. The highest sensitivity was observed during complete stretching of the leg from the body of the starfish, threshold contractions being recorded in response to 1-10(-8) M. During incomplete stretching of the leg, the sensitivity was found to be lower. Carbocholine sensitivity is higher than acetylcholine one. Proserine increased ACh sensitivity; the increase was very significant (1, 000 times) provided the leg was completely stretched. Atropine and D-tubocurarine decreased muscle sensitivity to ACh, shifting dose effect curves to the right. The data obtained suggest that muscles of the ambulacral leg possess the system ACh-cholinoreceptor, its concentration being the highest at the base of the leg. Cholinoreception is not limited by M- and H-types only.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D013215 Starfish Echinoderms having bodies of usually five radially disposed arms coalescing at the center. Sea Star,Seastar,Starfishes,Sea Stars,Seastars

Related Publications

N E Babskaia
January 2006, Zhurnal evoliutsionnoi biokhimii i fiziologii,
N E Babskaia
September 2017, Journal of anatomy,
N E Babskaia
January 2005, Zhurnal evoliutsionnoi biokhimii i fiziologii,
N E Babskaia
January 2005, Zhurnal evoliutsionnoi biokhimii i fiziologii,
N E Babskaia
July 1985, Cell biology international reports,
N E Babskaia
December 1992, Carbohydrate research,
N E Babskaia
December 1995, The Journal of experimental biology,
N E Babskaia
March 1989, Biological chemistry Hoppe-Seyler,
N E Babskaia
March 2019, The Journal of experimental biology,
Copied contents to your clipboard!