Nuk controls pathfinding of commissural axons in the mammalian central nervous system. 1996

M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

Eph family receptor tyrosine kinases have been proposed to control axon guidance and fasciculation. To address the biological functions of the Eph family member Nuk, two mutations in the mouse germline have been generated: a protein null allele (Nuk1) and an allele that encodes a Nuk-beta gal fusion receptor lacking the tyrosine kinase and C-terminal domains (Nuk(lacZ)). In Nuk1 homozygous brains, the majority of axons forming the posterior tract of the anterior commissure migrate aberrantly to the floor of the brain, resulting in a failure of cortical neurons to link the two temporal lobes. These results indicate that Nuk, a receptor that binds transmembrane ligands, plays a critical and unique role in the pathfinding of specific axons in the mammalian central nervous system.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases

Related Publications

M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
March 1972, Science (New York, N.Y.),
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
July 1993, Science (New York, N.Y.),
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
May 1991, Development (Cambridge, England),
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
January 1988, Nature,
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
March 1997, Neurosurgery,
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
March 2011, Neuroscience,
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
March 2023, Neuron,
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
October 1978, Experimental neurology,
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
January 2022, Frontiers in cellular neuroscience,
M Henkemeyer, and D Orioli, and J T Henderson, and T M Saxton, and J Roder, and T Pawson, and R Klein
February 2000, Pathologie-biologie,
Copied contents to your clipboard!