Intracellular metabolism of the orally active platinum drug JM216: influence of glutathione levels. 1996

F I Raynaud, and D E Odell, and L R Kelland
Cancer Research Campaign Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK.

JM216 (bis-acetato ammine dichloro cyclohexylamine Pt IV) is an oral platinum complex presently undergoing phase II clinical trials. Previous studies have identified some of its biotransformation products in clinical materials. This study evaluated the nature of JM216 biotransformation products intracellularly in two different human ovarian carcinoma cell lines, one relatively sensitive to platinum agents (CH1: JM216 4 h IC50 of 5.8 microM) and the other relatively resistant (SKOV3: JM216 4 h IC50 of 60.7 microM). Metabolic profiles were also evaluated at different growth status and in cells pretreated with buthionine sulphoximine (BSO), an agent known to decrease intracellular glutathione levels. Results showed that JM216 enters the cells and that the nature and percentage of biotransformation products was dependent upon glutathione levels. Furthermore, results support the view that the previously reported peak A biotransformation product contains a glutathione adduct. In exponentially growing SKOV3 cells which contain higher glutathione levels than CH1, (82.5 vs 37.8 nmol mg-1 protein), peak A represented 89% of total platinum 4 h after JM216 exposure compared with only 24% in CH1. Moreover, 60-70% depletion of glutathione achieved by 24 h pretreatment of cells with BSO resulted in a significant decrease in peak A in both cell lines and increased the cytotoxicity of JM216 in both CH1 and SKOV3 by approximately 2-fold. Following a 4 h exposure of exponentially growing SKOV3 cells to JM216, only peak A (89%) and JM216 (11%) could be detected whereas in CH1 cells, peak A (24%), JM216 (73%) and JM118 [cis-ammine dichloro (cyclohexylamine) platinum II] (3%) were detected. However, in CH1 cells at confluence, where glutathione is lower (8 nmol mg-1 protein) four metabolites (plus JM216 itself) were detected following exposure to 50 microM JM216; peak A, JM118, JM383 (bis-acetato ammine (cyclohexylamine) dihydroxy platinum IV) and an unidentified metabolite (D), also observed in patient's plasma ultrafiltrate. In confluent SKOV3 cells exposed to 50 microM JM216, peak A, JM216 and JM118 were detected. A further unidentified metabolite observed in patients receiving JM216 (metabolite F) was not formed inside these tumour cells. Overall, these data suggest that glutathione conjugation represents a major deactivation pathway for JM216.

UI MeSH Term Description Entries
D009944 Organoplatinum Compounds Organic compounds which contain platinum as an integral part of the molecule. Compounds, Organoplatinum
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

F I Raynaud, and D E Odell, and L R Kelland
March 2001, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
F I Raynaud, and D E Odell, and L R Kelland
September 2000, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
F I Raynaud, and D E Odell, and L R Kelland
April 1997, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
F I Raynaud, and D E Odell, and L R Kelland
July 2000, Bulletin du cancer,
F I Raynaud, and D E Odell, and L R Kelland
January 1996, Cancer chemotherapy and pharmacology,
F I Raynaud, and D E Odell, and L R Kelland
January 1996, Anticancer research,
F I Raynaud, and D E Odell, and L R Kelland
January 1996, Cancer chemotherapy and pharmacology,
F I Raynaud, and D E Odell, and L R Kelland
January 2000, Cancer chemotherapy and pharmacology,
Copied contents to your clipboard!