Mutation screening of 17 Japanese patients with neuropathic Gaucher disease. 1996

H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan.

Using PCR and PCR-single strand conformation polymorphism (SSCP) we have identified gene mutations in 17 Japanese patients with neuropathic Gaucher disease (type 2, 9 cases; type 3, 8 cases). The L444P, F213I, D409H, and 1447 del 20 and 1447 ins TG mutations accounted for eight (type 2, 6; type 3, 2), seven (type 2, 2; type 3, 5), three (type 3), and three (type 2) alleles, respectively. Three alleles were unique. Ten alleles (type 2, 5; type 3, 5) could not be identified. The genotypes, D409H/?, L444P/?, L444P/F213I, and F213I/?, were identified in three, three, two, and two patients, respectively. Six patients had a unique genotype and none of the mutant alleles could be identified in one patient. The data indicate that the genotypes in Japanese patients with neuropathic Gaucher disease are found to be heterogeneous and the genotype prevalence and mutated alleles are unique.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007564 Japan A country in eastern Asia, island chain between the North Pacific Ocean and the Sea of Japan, east of the Korean Peninsula. The capital is Tokyo. Bonin Islands
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005776 Gaucher Disease An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement. Cerebroside Lipidosis Syndrome,Gaucher Disease Type 1,Gaucher Disease Type 2,Glucocerebrosidase Deficiency Disease,Glucosylceramide Beta-Glucosidase Deficiency Disease,Neuronopathic Gaucher Disease,Acid beta-Glucosidase Deficiency,Acid beta-Glucosidase Deficiency Disease,Acute Neuronopathic Gaucher Disease,Chronic Gaucher Disease,GBA Deficiency,Gaucher Disease Type 3,Gaucher Disease, Acute Neuronopathic,Gaucher Disease, Acute Neuronopathic Type,Gaucher Disease, Chronic,Gaucher Disease, Chronic Neuronopathic Type,Gaucher Disease, Infantile,Gaucher Disease, Infantile Cerebral,Gaucher Disease, Juvenile,Gaucher Disease, Juvenile and Adult, Cerebral,Gaucher Disease, Neuronopathic,Gaucher Disease, Non-Neuronopathic Form,Gaucher Disease, Noncerebral Juvenile,Gaucher Disease, Subacute Neuronopathic Form,Gaucher Disease, Subacute Neuronopathic Type,Gaucher Disease, Type 1,Gaucher Disease, Type 2,Gaucher Disease, Type 3,Gaucher Disease, Type I,Gaucher Disease, Type II,Gaucher Disease, Type III,Gaucher Splenomegaly,Gaucher Syndrome,Gaucher's Disease,Gauchers Disease,Glucocerebrosidase Deficiency,Glucocerebrosidosis,Glucosyl Cerebroside Lipidosis,Glucosylceramidase Deficiency,Glucosylceramide Beta-Glucosidase Deficiency,Glucosylceramide Lipidosis,Infantile Gaucher Disease,Kerasin Histiocytosis,Kerasin Lipoidosis,Kerasin thesaurismosis,Lipoid Histiocytosis (Kerasin Type),Non-Neuronopathic Gaucher Disease,Subacute Neuronopathic Gaucher Disease,Type 1 Gaucher Disease,Type 2 Gaucher Disease,Type 3 Gaucher Disease,Cerebroside Lipidoses, Glucosyl,Cerebroside Lipidosis Syndromes,Cerebroside Lipidosis, Glucosyl,Deficiencies, GBA,Deficiencies, Glucocerebrosidase,Deficiency Disease, Glucocerebrosidase,Deficiency Diseases, Glucocerebrosidase,Deficiency, GBA,Deficiency, Glucocerebrosidase,Disease, Chronic Gaucher,Disease, Gaucher,Disease, Gaucher's,Disease, Gauchers,Disease, Glucocerebrosidase Deficiency,Disease, Infantile Gaucher,Disease, Juvenile Gaucher,Disease, Neuronopathic Gaucher,Disease, Non-Neuronopathic Gaucher,Diseases, Gauchers,Diseases, Glucocerebrosidase Deficiency,GBA Deficiencies,Gaucher Disease, Non Neuronopathic Form,Gaucher Disease, Non-Neuronopathic,Gauchers Diseases,Glucocerebrosidase Deficiencies,Glucocerebrosidase Deficiency Diseases,Glucocerebrosidoses,Glucosyl Cerebroside Lipidoses,Glucosylceramide Lipidoses,Histiocytoses, Kerasin,Histiocytoses, Lipoid (Kerasin Type),Histiocytosis, Kerasin,Histiocytosis, Lipoid (Kerasin Type),Juvenile Gaucher Disease,Kerasin Histiocytoses,Kerasin Lipoidoses,Kerasin thesaurismoses,Lipidoses, Glucosyl Cerebroside,Lipidoses, Glucosylceramide,Lipidosis Syndrome, Cerebroside,Lipidosis Syndromes, Cerebroside,Lipidosis, Glucosyl Cerebroside,Lipidosis, Glucosylceramide,Lipoid Histiocytoses (Kerasin Type),Lipoidoses, Kerasin,Lipoidosis, Kerasin,Non Neuronopathic Gaucher Disease,Splenomegaly, Gaucher,Syndrome, Cerebroside Lipidosis,Syndrome, Gaucher,Syndromes, Cerebroside Lipidosis,thesaurismoses, Kerasin,thesaurismosis, Kerasin
D005820 Genetic Testing Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing. Genetic Predisposition Testing,Genetic Screening,Predictive Genetic Testing,Predictive Testing, Genetic,Testing, Genetic Predisposition,Genetic Predictive Testing,Genetic Screenings,Genetic Testing, Predictive,Predisposition Testing, Genetic,Screening, Genetic,Screenings, Genetic,Testing, Genetic,Testing, Genetic Predictive,Testing, Predictive Genetic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
January 2005, Revista de neurologia,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
December 2010, Wiener medizinische Wochenschrift (1946),
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
January 1993, Human mutation,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
September 1995, American journal of medical genetics,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
December 1991, American journal of human genetics,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
September 1979, Archives of disease in childhood,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
March 2021, Leukemia & lymphoma,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
August 2009, Molecular genetics and metabolism,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
January 1989, Journal of inherited metabolic disease,
H Ida, and O M Rennert, and H Kawame, and T Ito, and K Maekawa, and Y Eto
October 1992, American journal of medical genetics,
Copied contents to your clipboard!