Cultured human Langerhans' cells are superior to fresh cells at presenting native HIV-1 protein antigens to specific CD4+ T-cell lines. 1996

G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy.

Cultured Langerhans' cells (CLC) exhibit enhanced antigen-presenting function compared to freshly isolated LC (FLC), but they are commonly believed to be inefficient at processing intact proteins. In this study, FLC and CLC from normal, human immunodeficiency virus (HIV) seronegative volunteers were compared for their ability to present the HIV-1 envelope glycoprotein gp120 or reverse transcriptase (p66) antigens to autologous, specific CD4+ T cell lines. Epidermal cell suspensions enriched for LC were prepared from suction blister roofs. FLC stimulated T cells at lower antigen concentrations compared to unfractionated peripheral blood mononuclear cells (PBMC). CLC were more potent on a per cell basis than FLC, PBMC or adherent monocytes at presenting native gp120, native p66 or immunogenic peptides. CLC were also more efficient than FLC or PBMC in terms of the amount of antigen required for T-cell activation. Chloroquine and leupeptin inhibited presentation of intact p66, but not of an immunodominant peptide, by FLC or CLC, thus indicating that both cells utilize antigen-processing mechanisms that are based on intracellular acidification and protease activity. Incubation of CLC with monoclonal antibodies against HLA-DR, CD11b, CD18, CD50, CD54, CD58 or CD80, but not anti-major histocompatibility complex class I (MHC-I), inhibited antigen-specific T-cell proliferation to varying degrees. We conclude that human CLC retain the ability to process and present protein antigens potently to CD4+ T cells. Thus, CLC have the capacity to participate actively in the generation and maintenance of T-helper cell immunity to viral antigens during HIV-1 infection.

UI MeSH Term Description Entries
D007801 Langerhans Cells Recirculating, dendritic, antigen-presenting cells containing characteristic racket-shaped granules (Birbeck granules). They are found principally in the stratum spinosum of the EPIDERMIS and are rich in Class II MAJOR HISTOCOMPATIBILITY COMPLEX molecules. Langerhans cells were the first dendritic cell to be described and have been a model of study for other dendritic cells (DCs), especially other migrating DCs such as dermal DCs and INTERSTITIAL DENDRITIC CELLS. Langerhans Cell,Dendritic Cells, Dermal,Dendritic Cells, Epidermal,Dendritic Cells, Skin,Dermal Dendritic Cells,Epidermal Dendritic Cells,Skin Dendritic Cells,Cell, Dermal Dendritic,Cell, Epidermal Dendritic,Cell, Langerhans,Cell, Skin Dendritic,Cells, Dermal Dendritic,Cells, Epidermal Dendritic,Cells, Langerhans,Cells, Skin Dendritic,Dendritic Cell, Dermal,Dendritic Cell, Epidermal,Dendritic Cell, Skin,Dermal Dendritic Cell,Epidermal Dendritic Cell,Skin Dendritic Cell
D007976 Leupeptins A group of acylated oligopeptides produced by Actinomycetes that function as protease inhibitors. They have been known to inhibit to varying degrees trypsin, plasmin, KALLIKREINS, papain and the cathepsins.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015488 HIV Antigens Antigens associated with specific proteins of the human adult T-cell immunodeficiency virus (HIV); also called HTLV-III-associated and lymphadenopathy-associated virus (LAV) antigens. AIDS Antigens,HIV-Associated Antigens,HTLV-III Antigens,HTLV-III-LAV Antigens,LAV Antigens,Lymphadenopathy-Associated Antigens,T-Lymphotropic Virus Type III Antigens, Human,HIV Associated Antigens,HTLV III Antigens,HTLV III LAV Antigens,Lymphadenopathy Associated Antigens,T Lymphotropic Virus Type III Antigens, Human,Antigens, AIDS,Antigens, HIV,Antigens, HIV Associated,Antigens, HIV-Associated,Antigens, HTLV III,Antigens, HTLV-III,Antigens, HTLV-III-LAV,Antigens, LAV,Antigens, Lymphadenopathy Associated,Antigens, Lymphadenopathy-Associated,Associated Antigens, HIV,Associated Antigens, Lymphadenopathy,III Antigens, HTLV
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte

Related Publications

G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
January 1994, Journal of acquired immune deficiency syndromes,
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
October 2006, Chinese medical journal,
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
March 1986, Journal of immunology (Baltimore, Md. : 1950),
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
January 1993, Journal of immunology (Baltimore, Md. : 1950),
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
November 2017, Immunology,
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
February 2004, Journal of immunology (Baltimore, Md. : 1950),
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
January 1999, Methods in molecular medicine,
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
September 1992, The Journal of investigative dermatology,
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
December 2018, Cellular immunology,
G Girolomoni, and M T Valle, and V Zacchi, and M G Costa, and A Giannetti, and F Manca
December 2016, Papillomavirus research (Amsterdam, Netherlands),
Copied contents to your clipboard!