| D010179 |
Pancreas |
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM. |
|
|
| D010566 |
Virulence Factors, Bordetella |
A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. |
Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D016222 |
Fibroblast Growth Factor 2 |
A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). |
Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2 |
|
| D017468 |
Receptors, Fibroblast Growth Factor |
Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity. |
FGF Receptor Complex,FGF Receptor Complexes,FGF Receptors,Fibroblast Growth Factor Receptors,Receptors, FGF,FGF Receptor,Fibroblast Growth Factor Receptor,Heparin-Binding Growth Factor Receptor,Heparin Binding Growth Factor Receptor,Receptor, FGF |
|
| D051381 |
Rats |
The common name for the genus Rattus. |
Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus |
|
| D019204 |
GTP-Binding Proteins |
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. |
G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory |
|
| D037342 |
Pertussis Toxin |
One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity. |
IAP Pertussis Toxin,Islet-Activating Protein,Pertussigen,Histamine-Sensitizing Factor,Islets-Activating Protein,Lymphocytosis-Promoting Factor,Histamine Sensitizing Factor,Islet Activating Protein,Islets Activating Protein,Lymphocytosis Promoting Factor,Pertussis Toxin, IAP,Toxin, IAP Pertussis,Toxin, Pertussis |
|