Peripheral and ovarian IGF-I concentrations during the ovine oestrous cycle. 1996

B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
Wallaceville Animal Research Centre, Upper Hutt, New Zealand.

IGF-I was measured by RIA in plasma samples collected 8-hourly for 24 days which included two consecutive preovulatory surges of LH. In a separate study, ovarian venous blood was collected from animals undergoing ovariectomy on day 10 of the oestrous cycle, or 36 h later after being treated with prostaglandin with or without steroid-free bovine follicular fluid. Jugular venous blood samples were collected before, during and after surgery. Follicles were dissected from ovaries of these animals and sorted into categories of small, intermediate and large, non-atretic or atretic, and the follicular fluid was pooled and assayed for IGF-I. From another population of ovaries recovered from the slaughterhouse, granulosa, theca and corpora lutea were isolated, homogenized and assayed for IGF-I. Finally ovarian corpora lutea and granulosa cells were each incubated with tritiated amino acids overnight at 37 degrees C. Thereafter the tissues and media were sonicated, IGF-I extracted from the supernatant and tritiated IGF-I precipitated using a specific IGF-I antibody. The absence of any significant change in peripheral IGF-I concentrations following ovariectomy and the finding that the ovarian venous IGF-I concentrations (161 +/- 10 micrograms/l) were not significantly different from levels seen in peripheral blood (157 +/- 10 microgram/l) indicated that the ovary is not a net exporter of IGF-I. However, the ovary does synthesize IGF-I, as evidenced by granulosa and luteal synthesis, but probably not in quantities in excess of that utilized by ovarian tissues per se. Although the plasma IGF-I levels increased around the second preovulatory LH surge, the results overall indicated that the IGF-I concentrations in plasma are not strictly related to any major ovarian event during the oestrous cycle in the sheep. This view is based on the findings that the concentration of IGF-I in follicular fluid was not related to follicular health but correlated with those in peripheral plasma and that the ovarian venous concentrations did not vary between left and right ovaries irrespective of whether the ovaries contained a corpus luteum, dominant follicle or neither. Collectively, these results are consistent with the notion that IGF-I of ovarian origin fulfils an autocrine/paracrine function and does not have an endocrine role. Moreover, the results show that the concentrations of IGF-I in follicular fluid reflect those in peripheral plasma.

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
D005260 Female Females

Related Publications

B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
December 1972, Journal of reproduction and fertility,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
August 1973, The Journal of endocrinology,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
August 1970, The Journal of endocrinology,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
April 1979, The Journal of endocrinology,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
October 1970, The Journal of endocrinology,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
July 1973, Journal of reproduction and fertility. Supplement,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
August 1969, Journal of reproduction and fertility,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
November 1991, Journal of reproduction and fertility,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
March 1994, Journal of reproduction and fertility,
B R Leeuwenberg, and N L Hudson, and L G Moore, and P R Hurst, and K P McNatty
September 1975, Journal of reproduction and fertility,
Copied contents to your clipboard!