Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. 1996

M Shen, and T M Piser, and V S Seybold, and S A Thayer
Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.

Activation of cannabinoid receptors inhibits voltage-gated Ca2+ channels and activates K+ channels, reminiscent of other G-protein-coupled signaling pathways that produce presynaptic inhibition. We tested cannabinoid receptor agonists for effects on excitatory neurotransmission between cultured rat hippocampal neurons. Reducing the extracellular Mg2+ concentration to 0.1 mM elicited repetitive, transient increases in intracellular Ca2+ concentration ([Ca2+]i spikes) that resulted from bursts of action potentials, as measured by combined whole-cell current clamp and indo-1-based microfluorimetry. Pharmacological characterization indicated that the [Ca2+]i spikes required glutamatergic synaptic transmission. Cannabinoid receptor ligands inhibited stereoselectively the frequency of [Ca2+]i spiking in the rank order of potency: CP 54,939 > CP 55,940 > Win 55,212-2 > anandamide, with EC50 values of 0.36, 1.2, 2.7, and 71 nM, respectively. CP 55,940 was potent, but not efficacious, and reversed the inhibition produced by Win 55,212-2, indicating that it is a partial agonist. Inhibition of [Ca2+]i spiking by Win 55,212-2 was prevented by treatment of cultures with active, but not heat-treated, pertussis toxin. Win 55,212-2 (100 nM) inhibited stereoselectively CNQX-sensitive excitatory postsynaptic currents (EPSCs) elicited by presynaptic stimulation with an extracellular electrode, but did not affect the presynaptic action potential or currents elicited by direct application of kainate. Consistent with a presynaptic site of action, Win 55,212-2 increased both the number of response failures and the coefficient of variation of the evoked EPSCs. In contrast, cannabimimetics did not affect bicuculline-sensitive inhibitory postsynaptic currents. Thus, activation of cannabinoid receptors inhibits the presynaptic release of glutamate via an inhibitory G-protein.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010875 Pipecolic Acids Acids, Pipecolic
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D043882 Receptors, Cannabinoid A class of G-protein-coupled receptors that are specific for CANNABINOIDS such as those derived from CANNABIS. They also bind a structurally distinct class of endogenous factors referred to as ENDOCANNABINOIDS. The receptor class may play a role in modulating the release of signaling molecules such as NEUROTRANSMITTERS and CYTOKINES. Cannabinoid Receptor,Cannabinoid Receptors,Receptor, Cannabinoid
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Shen, and T M Piser, and V S Seybold, and S A Thayer
June 2011, The Journal of biological chemistry,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
September 2014, Brain research,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
January 2001, Neuroscience,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
November 2009, European journal of pharmacology,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
January 2011, British journal of pharmacology,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
September 1998, Molecular pharmacology,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
October 2000, British journal of pharmacology,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
January 2004, Hippocampus,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
April 2011, Neuroscience,
M Shen, and T M Piser, and V S Seybold, and S A Thayer
January 1991, The European journal of neuroscience,
Copied contents to your clipboard!