Assembly of microfilaments and microtubules from axonally transported actin and tubulin after axotomy. 1996

J M Jacob, and I G McQuarrie
Neural Regeneration Center, Cleveland Veterans Affairs Medical Center, Ohio 44106, USA.

The slow component (SC) of axonal transport conveys structural proteins, regulatory proteins, and glycolytic enzymes toward the axon tip at 1-6 mm/day. Following axon interruption (axotomy), the rate of outgrowth corresponds to the rate of SCb-the fastest subcomponent of SC. Both axonal outgrowth and SCb accelerate 20-25% after axotomy. Tubulin and actin are the major proteins being carried by SCb. To further characterize the acceleration of SCb, we measured the equilibrium between subunits and polymers for both actin and tubulin. We radiolabeled newly synthesized proteins in rat motor neurons by microinjecting [35S]methionine into the spinal cord 7 days after crushing the sciatic nerve (85 mm from the spinal cord). Nerves were removed 7 days later for homogenization in polymer-stabilizing buffer (PSB) and centrifugation, followed by SDS-PAGE of supernatants (S) and pellets (P). We removed beta-tubulin, actin, and the medium-weight neurofilament protein (NF-M) from each gel by using the fluorogram as a template. After solubilizing gel segments for liquid scintillation spectrometry, we expressed counts as a polymerization ratio: P/[S+P]. In the nerve segments that contained radiolabeled Scb proteins, located 24-36 mm from the spinal cord, axotomy increased the polymerization ratio of SCb actin from 0.23 to 0.36 (P < 0.05) but had no effect on SCb beta-tubulin. In a separate experiment, we added 12 microM taxol to PSB to stabilize newly assembled microtubules. Adding taxol did not alter the polymerization ratio for SCb beta-tubulin in sham-axotomized nerves but aid increase the ratio in axotomized nerves, from 0.44 to 0.63 (P < 0.05); polymerization ratios for SCb actin were unaffected. We conclude that the assembly of microfilaments and microtubules increases to provide cytoskeletal elements for axon sprouts. The resulting loss of actin and tubulin subunits may play a role in the acceleration of SCb.

UI MeSH Term Description Entries
D008297 Male Males
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D005591 Chemical Fractionation Separation of a mixture in successive stages, each stage removing from the mixture some proportion of one of the substances, for example by differential solubility in water-solvent mixtures. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Fractionation, Chemical,Chemical Fractionations,Fractionations, Chemical
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D001704 Biopolymers Polymers synthesized by living organisms. They play a role in the formation of macromolecular structures and are synthesized via the covalent linkage of biological molecules, especially AMINO ACIDS; NUCLEOTIDES; and CARBOHYDRATES. Bioplastics,Bioplastic,Biopolymer

Related Publications

J M Jacob, and I G McQuarrie
August 1983, Neuroscience,
J M Jacob, and I G McQuarrie
January 1985, Nature,
J M Jacob, and I G McQuarrie
January 1989, Biology of the cell,
J M Jacob, and I G McQuarrie
August 1995, Experimental eye research,
J M Jacob, and I G McQuarrie
April 1981, Brain research,
J M Jacob, and I G McQuarrie
January 1974, Triangle; the Sandoz journal of medical science,
J M Jacob, and I G McQuarrie
October 1990, Neurochemical research,
J M Jacob, and I G McQuarrie
April 1980, Neurochemical research,
J M Jacob, and I G McQuarrie
February 1995, Neurochemical research,
Copied contents to your clipboard!