Properties of recombinant gamma-aminobutyric acid A receptor isoforms containing the alpha 5 subunit subtype. 1996

E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
Department of Neurology, University of Michigan, Ann Arbor 48104-1687, USA.

The cDNAs encoding alpha 5 and gamma 2L subunit subtypes of the gamma-aminobutyric acid (GABA) type A receptor (GABAR) were transfected into L929 cells together with cDNAs encoding either the beta 1, beta 2, or beta 3 subunit subtype. Properties of expressed recombinant alpha 5 beta X gamma 2L (where X = 1,2, or 3) GABARs were studied with the use of whole-cell, patch-clamp techniques. In cells voltage-clamped at -70 mV with equlvalent bath and pipette chloride concentrations, the application of GABA produced a concentration-dependent inward chloride current with all three alpha 5 beta X gamma 2L isoforms. Minimal or no responses were recorded from cells transfected with only two subunit cDNAs, demonstrating that all three subunits were required for functional receptor assembly in these cells. The GABA concentration producing a half-maximal current was similar for beta 2 and beta 3 subtype-containing receptors (6 microM) but higher for beta 1 subtype-containing receptors (26 microM). alpha 5 beta 3 gamma 2L receptors were zinc and diazepam sensitive but zolpidem insensitive. In response to low GABA concentrations, beta 1 and beta 3 subtype-containing receptors showed outward rectification of the current-voltage relationship, whereas current-voltage responses of beta 2 subtype-containing receptors were relatively linear. Likewise, at high GABA concentrations, beta 1 and beta 3 subtype-containing receptors showed less desensitization at positive than at negative membrane potentials. Beta 2 subtype-containing receptors displayed faster desensitization at depolarized potentials. These voltage-dependent properties were characteristic of alpha 5 but not alpha 1 or alpha 6 subtype-containing receptors and were similar to responses recorded from hippocampal CA1 pyramidal neurons. Based on the pharmacological and biophysical similarities to hippocampal GABAR responses, the alpha 5 beta 3 gamma 2L isoform could represent a native GABAR subtype.

UI MeSH Term Description Entries
D006993 Hypnotics and Sedatives Drugs used to induce drowsiness or sleep or to reduce psychological excitement or anxiety. Hypnotic,Sedative,Sedative and Hypnotic,Sedatives,Hypnotic Effect,Hypnotic Effects,Hypnotics,Sedative Effect,Sedative Effects,Sedatives and Hypnotics,Effect, Hypnotic,Effect, Sedative,Effects, Hypnotic,Effects, Sedative,Hypnotic and Sedative
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
March 1996, Molecular pharmacology,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
June 2002, Molecular pharmacology,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
January 1999, Molecular pharmacology,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
February 2019, Molecular neuropsychiatry,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
December 2008, World journal of gastroenterology,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
June 1997, The Journal of biological chemistry,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
May 2004, Proceedings of the National Academy of Sciences of the United States of America,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
May 1990, Journal of neurochemistry,
E C Burgard, and E I Tietz, and T R Neelands, and R L Macdonald
February 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!