Recognition of DNA by designed ligands at subnanomolar concentrations. 1996

J W Trauger, and E E Baird, and P B Dervan
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.

Small molecules that specifically bind with high affinity to any predetermined DNA sequence in the human genome would be useful tools in molecular biology and potentially in human medicine. Simple rules have been developed to control rationally the sequence specificity of minor-groove-binding polyamides containing N-methylimidazole and N-methylpyrrole amino acids. Two eight-ring pyrrole-imidazole polyamides differing in sequence by a single amino acid bind specifically to respective six-base-pair target sites which differ in sequence by a single base pair. Binding is observed at subnanomolar concentrations of ligand. The replacement of a single nitrogen atom with a C-H regulates affinity and specificity by two orders of magnitude. The broad range of sequences that can be specifically targeted with pyrrole-imidazole polyamides, coupled with an efficient solid-phase synthesis methodology, identify a powerful class of small molecules for sequence-specific recognition of double-helical DNA.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001704 Biopolymers Polymers synthesized by living organisms. They play a role in the formation of macromolecular structures and are synthesized via the covalent linkage of biological molecules, especially AMINO ACIDS; NUCLEOTIDES; and CARBOHYDRATES. Bioplastics,Bioplastic,Biopolymer
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

J W Trauger, and E E Baird, and P B Dervan
April 2024, Chemical science,
J W Trauger, and E E Baird, and P B Dervan
July 1991, The Journal of biological chemistry,
J W Trauger, and E E Baird, and P B Dervan
August 2019, Chemistry (Weinheim an der Bergstrasse, Germany),
J W Trauger, and E E Baird, and P B Dervan
January 1991, Bioconjugate chemistry,
J W Trauger, and E E Baird, and P B Dervan
January 1999, Nucleic acids symposium series,
J W Trauger, and E E Baird, and P B Dervan
February 2019, Biophysical chemistry,
J W Trauger, and E E Baird, and P B Dervan
August 2005, Analytical and bioanalytical chemistry,
J W Trauger, and E E Baird, and P B Dervan
September 2016, Chemistry (Weinheim an der Bergstrasse, Germany),
J W Trauger, and E E Baird, and P B Dervan
July 2003, Proceedings of the National Academy of Sciences of the United States of America,
J W Trauger, and E E Baird, and P B Dervan
January 2010, Journal of the American Chemical Society,
Copied contents to your clipboard!