Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL. 1996

Z Lin, and E Eisenstein
Center for Advanced Research in Biotechnology, University of the Maryland Biotechnology Institute, Rockville, MD, 20850, USA.

The Escherichia coli chaperonins GroEL and GroES facilitate the refolding of polypeptide chains in an ATP hydrolysis-dependent reaction. The elementary steps in the binding and release of polypeptide substrates to GroEL were investigated in surface plasmon resonance studies to measure the rates of binding and dissociation of a normative variant of subtilisin. The rate constants determined for GroEL association with and dissociation from this variant yielded a micromolar dissociation constant, in agreement with independent calorimetric estimates. The rate of GroEL dissociation from the nonnative chain was increased significantly in the presence of 5'-adenylylimidodiphosphate (AMP-PNP), ADP, and ATP, yielding maximal values between 0.04 and 0.22 s(-1). The sigmoidal dependence of the dissociation rate on the concentration of AMP-PNP and ADP indicated that polypeptide dissociation is limited by a concerted conformational change that occurs after nucleotide binding. The dependence of the rate of release on ATP exhibited two sigmoidal transitions attributable to nucleotide binding to the distal and proximal toroid of a GroEL-polypeptide chain complex. The addition of GroES resulted in a marked increase in the rate of nonnative polypeptide release from GroEL, indicating that the cochaperonin binds more rapidly than the dissociation of polypeptides. These data demonstrate the importance of nucleotide binding-promoted concerted conformational changes for the release of chains from GroEL, which correlate with the sigmoidal hydrolysis of ATP by the chaperonin. The implications of these findings are discussed in terms of a working hypothesis for a single cycle of chaperonin action.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013381 Subtilisins A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.- Alcalase,AprA-Subtilisin,Bacillus amyloliquefaciens Serine Protease,Bacillus subtilis Alkaline Proteinase,Carlsberg Subtilisin,Maxatase,Nagarse,Novo Alcalase,Profezim,Protease VII,Subtilisin 72,Subtilisin A,Subtilisin BPN',Subtilisin Carlsberg,Subtilisin DY,Subtilisin E,Subtilisin GX,Subtilisin Novo,Subtilopeptidase A,Alcalase, Novo,AprA Subtilisin,Subtilisin, Carlsberg
D018834 Chaperonin 60 A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein. Heat-Shock Proteins 60,hsp60 Family,GroEL Protein,GroEL Stress Protein,Heat-Shock Protein 60,hsp60 Protein,Heat Shock Protein 60,Heat Shock Proteins 60
D018835 Chaperonin 10 A group I chaperonin protein that forms a lid-like structure which encloses the non-polar cavity of the chaperonin complex. The protein was originally studied in BACTERIA where it is commonly referred to as GroES protein. Heat-Shock Proteins 10,hsp10 Family,GroES Protein,GroES Stress Protein,Heat-Shock Protein 10,hsp10 Protein,Heat Shock Protein 10,Heat Shock Proteins 10

Related Publications

Z Lin, and E Eisenstein
January 2000, Methods in molecular biology (Clifton, N.J.),
Z Lin, and E Eisenstein
March 1992, Protein science : a publication of the Protein Society,
Z Lin, and E Eisenstein
February 1995, Biophysical chemistry,
Z Lin, and E Eisenstein
April 2004, The Journal of biological chemistry,
Copied contents to your clipboard!