In vitro and in vivo effects of lead, methyl mercury and mercury on inositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate receptor bindings in rat brain. 1996

C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
Department of Biology, Savannah State College, GA, USA.

In vitro and in vivo effects of mercury (Hg), methyl mercury (MM) and lead (Pb) on [3H]inositol 1,4,5-trisphosphate (IP3) and [3H]inositol 1,3,4,5-tetrakisphosphate (IP4) receptor binding in the Sprague-Dawley rat brain cerebellar membranes were studied. In vitro studies indicate that binding of [3H]IP3 and [3H]IP4 to cerebellar membranes was inhibited by Hg while they were stimulated by MM or Pb in a concentration-dependent manner. MM was more potent (EC50 3.4 microM) than Pb (EC50 18.2 microM) in stimulating the [3H]IP3 receptor binding activity whereas Pb (IC50 30 microM) was more potent than MM (IC50 133 microM) in stimulating the [3H]IP4 receptor binding. When the rats were treated (i.p) with Hg (5 mg/kg body wt.) or MM (5 mg/kg body wt.) or Pb (25 mg/kg body wt.) for 3 or 24 h, no significant alterations in [3H]IP3 receptor binding were observed in cerebellum and cerebral cortex. But the above treatment of Pb or MM for 3 or 24 h to rats resulted in an increase of [3H]IP4 receptor binding in the membranes of cerebral cortex. However, the rats treated with Hg (1 mg/kg body wt./day) or Pb (25 mg/kg body wt./day) for 7 days did not show any alteration in binding of [3H]IP3 to its receptors in cerebellar membranes but an increase in this receptor binding was noticed with the treatment of MM (2.5 mg/kg body wt./day) for 7 days. The cerebellum and cerebral cortex of rats with the above treatment of MM or Pb for 7 days exhibited an increase in [3H]IP4 receptor binding. These in vitro and in vivo data suggest that alterations in inositol polyphosphate receptor binding by metals could result in alterations in intracellular calcium levels which may influence neuronal activity.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008297 Male Males
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D008767 Methylmercury Compounds Organic compounds in which mercury is attached to a methyl group. Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate

Related Publications

C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
January 1996, Neuropsychobiology,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
October 1994, Cell calcium,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
March 1991, The Biochemical journal,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
August 1993, British journal of pharmacology,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
February 1989, Biochemical Society transactions,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
September 1996, FEBS letters,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
April 1991, Biochemical Society transactions,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
April 1990, The Biochemical journal,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
C S Chetty, and S Rajanna, and E Hall, and P R Yallapragada, and B Rajanna
January 1997, Journal of neural transmission (Vienna, Austria : 1996),
Copied contents to your clipboard!