Morphological investigation on phenylhydrazine-induced erythropoiesis in the adult mouse liver. 1977

R E Ploemacher, and P L van Soest

In adult mice suffering from a phenylhydrazine (PHZ)-induced hemolytic anemia, erythropoietic islands were observed in the liver. These islands were studied with the light and electron microscope. Within two days after the beginning of four daily injections of PHZ, erythoid elements appeared in the sinusoids and central veins. A maximum number of erythroblasts was found on day 7. Light and electron microscopic observations revealed that the erythropoietic islands consisted of centrally located macrophages(CM) with a Kupffer cell-like morphology, surrounded by erythroblasts, which were often of the same maturation stage. CM in central veins (CM-V) and in sinusoids (CM-S) were found to have a different morphology. The CM-V phagocytized less circulating red blood cells and were in contact with a smaller number of erythroblasts. Furthermore, the contact areas between erythroblasts and CM-S extended for a much longer distance than those between erythroblasts and CM-V. The progenitor cell for the CM-V is most likely a monocyte, since cells which were morphologically determined as monocytes were found to appear on the first day of the PHZ treatment and differentiated into macrophages within about 2 days. The origin of the CM-S population was less clear, but could be monocytic as well. These data are tentatively explained as a migration of a progenitor of a cellular component of the erythroid micro-environment into the liver after appropriate stimuli. In contrast to fetal liver erythropoiesis, erythroblasts in the adult liver occurred only incidentally extrasinusoidally. Furthermore, specialized membrane contacts between erythroblasts and CM or hepatocytes could not be observed in adult liver. Ferritin could not be detected on the erythroid cell membrane or located in coated vesicles. Also, no ferritin could be observed within or attached to the finger-like processes of CM. The observations suggest that the coated vesicles in erythoid elements are partly exocytotic vesicles and are not specific for ferritin transport. The morphological aspects of PHZ-induced extramedullary erythropoiesis is discussed in relation to the hemopoietic microenvironment.

UI MeSH Term Description Entries
D007728 Kupffer Cells Specialized phagocytic cells of the MONONUCLEAR PHAGOCYTE SYSTEM found on the luminal surface of the hepatic sinusoids. They filter bacteria and small foreign proteins out of the blood and dispose of worn out red blood cells. Kupffer Cell,Cell, Kupffer,Cells, Kupffer
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010659 Phenylhydrazines Diazo derivatives of aniline, used as a reagent for sugars, ketones, and aldehydes. (Dorland, 28th ed)
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004900 Erythroblasts Immature, nucleated ERYTHROCYTES occupying the stage of ERYTHROPOIESIS that follows formation of ERYTHROID PRECURSOR CELLS and precedes formation of RETICULOCYTES. The normal series is called normoblasts. Cells called MEGALOBLASTS are a pathologic series of erythroblasts. Erythrocytes, Nucleated,Normoblasts,Proerythroblasts,Pronormoblasts,Erythroblast,Erythrocyte, Nucleated,Normoblast,Nucleated Erythrocyte,Nucleated Erythrocytes,Proerythroblast,Pronormoblast
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses

Related Publications

R E Ploemacher, and P L van Soest
June 1982, Biochemical and biophysical research communications,
R E Ploemacher, and P L van Soest
March 1981, The Journal of biological chemistry,
R E Ploemacher, and P L van Soest
September 1970, The American journal of physiology,
R E Ploemacher, and P L van Soest
May 2013, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
R E Ploemacher, and P L van Soest
March 1977, Experimental hematology,
R E Ploemacher, and P L van Soest
October 2015, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!