Antigen-antibody diffusion-limited binding kinetics for biosensors. A fractal analysis. 1996

A Sadana, and A M Beelaram
Chemical Engineering Department, University of Mississippi, University 38677-9740, USA.

A fractal analysis is made for antigen-antibody binding kinetics for different biosensor applications available in the literature. Both types of examples are considered wherein: (1) the antigen is in solution and the antibody is immobilized on the fiberoptic surface, and (2) the antibody is in solution and the antigen is immobilized on the fiberoptic surface. For example, when the antibody is immobilized on the surface, an increase in the antigen Clostridium botulinum toxin A concentration in solution leads to (1) a decrease in the fractal dimension value or state of disorder, and (2) a higher rate constant for binding on the fiberoptic surface. An analysis of the effect of the influence of different parameters on the fractal dimension values for a particular example, such as varying treatments or incubation procedures, helps provide insights into the conformational states and reactions occurring on the fiberoptic surface. The analysis of the different example taken together provides novel physical insights into the state of "disorder" and reactions occurring on the surface. Such types of analysis should help contribute toward manipulating the reactions occurring on the fiberoptic surfaces in desired directions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D017709 Fractals Patterns (real or mathematical) which look similar at different scales, for example the network of airways in the lung which shows similar branching patterns at progressively higher magnifications. Natural fractals are self-similar across a finite range of scales while mathematical fractals are the same across an infinite range. Many natural, including biological, structures are fractal (or fractal-like). Fractals are related to "chaos" (see NONLINEAR DYNAMICS) in that chaotic processes can produce fractal structures in nature, and appropriate representations of chaotic processes usually reveal self-similarity over time. Fractal

Related Publications

A Sadana, and A M Beelaram
January 1997, Applied biochemistry and biotechnology,
A Sadana, and A M Beelaram
January 1997, Biotechnology progress,
A Sadana, and A M Beelaram
January 1994, Biotechnology progress,
A Sadana, and A M Beelaram
July 1998, Journal of colloid and interface science,
A Sadana, and A M Beelaram
September 1999, Applied biochemistry and biotechnology,
A Sadana, and A M Beelaram
August 2003, Biosensors & bioelectronics,
Copied contents to your clipboard!