oriP is essential for EBNA gene promoter activity in Epstein-Barr virus-immortalized lymphoblastoid cell lines. 1996

M T Puglielli, and M Woisetschlaeger, and S H Speck
Committee on Virology of Harvard University at Harvard Medical School, Boston, Massachusetts 02115, USA.

During Epstein-Barr virus latent infection of B lymphocytes in vitro, six viral nuclear antigens (EBNAs) are expressed from one of two promoters, Cp or Wp, whose activities are mutually exclusive. Upon infection, Wp is initially active, followed by a switch to Cp for the duration of latency. In this study, the region upstream of Cp was analyzed for the presence of cis elements involved in regulating the activities of the EBNA gene promoters in established in vitro immortalized lymphoblastoid cell lines (LCLs). It was determined that oriP, the origin for episomal maintenance during latency, is essential for efficient transcription initiation from either Cp or Wp in LCLs, as well as in some Burkitt's lymphoma cell lines. Deletion of the EBNA2-dependent enhancer located upstream of Cp resulted in a ca. two- to fivefold reduction in Cp activity in the LCLs assayed. More extensive deletion of sequences upstream of Cp, including the EBNA2-dependent enhancer, resulted in nearly complete loss of Cp activity. This loss of activity was shown to correlate with deletion of two CCAAT boxes, a proximal CCAAT box located at bp -61 to -65 and a distal CCAAT box located at bp -253 to -257, upstream of Cp. Site-directed mutagenesis of these cis elements demonstrated that Cp activity is highly dependent on the presence of a properly positioned CCAAT box, with the dependence on the distal CCAAT box apparent only when the proximal CCAAT box was deleted or mutated. Deletion of the glucocorticoid response elements located at ca. bp -850 upstream of Cp did not result in a significant loss in activity. In general, deletions which diminished Cp activity resulted in induction of Wp activity, consistent with suppression of Wp activity by transcriptional interference from Cp. The identification of oriP and the EBNA2-dependent enhancer as the major positive cis elements involved in regulating Cp activity in LCL suggests that EBNA gene transcription is largely autoregulated by EBNA 1 and EBNA 2.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

M T Puglielli, and M Woisetschlaeger, and S H Speck
October 2006, Journal of virology,
M T Puglielli, and M Woisetschlaeger, and S H Speck
December 2004, Journal of virology,
M T Puglielli, and M Woisetschlaeger, and S H Speck
May 1986, Cell biology international reports,
M T Puglielli, and M Woisetschlaeger, and S H Speck
August 2021, Experimental and therapeutic medicine,
M T Puglielli, and M Woisetschlaeger, and S H Speck
December 2001, The Journal of general virology,
M T Puglielli, and M Woisetschlaeger, and S H Speck
November 2011, Journal of visualized experiments : JoVE,
M T Puglielli, and M Woisetschlaeger, and S H Speck
February 1997, Nihon rinsho. Japanese journal of clinical medicine,
M T Puglielli, and M Woisetschlaeger, and S H Speck
February 2007, Current protocols in immunology,
Copied contents to your clipboard!