CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). 1977

G L Florant, and H C Heller

Hypothalamic thermosensitivity of marmots was characterized during euthermia and hibernation. Hypothalamic temperature (Thy) was manipulated with chronically implanted, water-perfused thermodes while the animal's rate of oxygen consumption was continuously measured. The threshold Thy for eliciting an increase in metabolic heat production (MHP) and the proportionality constant (alphaMHP) relating rate of MHP to Thy were determined. In four euthermic marmots alphaMHP averaged -1.1 W-kg-1-degrees C-1. During the entrance into hibernation, as body temperature (Tb) declined from 36 to 8 degrees C, the threshold Thy for the MHP response progressively declined and was demonstrable at all times. The Thy of marmots in deep hibernation at an ambient temperature (Ta) of 5 degrees C plateaued near 7.5 degrees C, but threshold Thy for MHP showed a continuous slow decline of 0.2-0.4 degrees C a day, until one day prior to arousal. Proportional regulation of Tb was demonstrable at all times during deep hibernation. The average proportionality constant for the MHP response to hypothalamic cooling during deep hibernation in three marmots was -0.08 W-kg-1-degrees C-1. These results demonstrate that the hypothalamic regulator of Tb is active throughout hibernation and that there are progressive changes in its thermosensitivity.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008392 Marmota A genus of Sciuridae consisting of 14 species. They are shortlegged, burrowing rodents which hibernate in winter. Woodchucks,Marmots,Marmot,Marmotas,Woodchuck
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006605 Hibernation The dormant state in which some warm-blooded animal species pass the winter. It is characterized by narcosis and by sharp reduction in body temperature and metabolic activity and by a depression of vital signs. Hibernation, Artificial,Induced Hibernation,Artificial Hibernation,Artificial Hibernations,Hibernation, Induced,Hibernations,Induced Hibernations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012377 Rodentia A mammalian order which consists of 29 families and many genera. Beavers,Capybaras,Castor Beaver,Dipodidae,Hydrochaeris,Jerboas,Rodents,Beaver,Capybara,Hydrochaeri,Jerboa,Rodent,Rodentias
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

G L Florant, and H C Heller
March 1984, Biology of reproduction,
G L Florant, and H C Heller
January 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
G L Florant, and H C Heller
March 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
G L Florant, and H C Heller
January 1986, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
G L Florant, and H C Heller
September 1974, The American journal of physiology,
G L Florant, and H C Heller
May 1973, The American journal of physiology,
G L Florant, and H C Heller
April 1972, The American journal of physiology,
G L Florant, and H C Heller
January 1991, Comparative biochemistry and physiology. A, Comparative physiology,
Copied contents to your clipboard!