Characterization of excitatory amino acid neurotoxicity in N-methyl-D-aspartate receptor-deficient mouse cortical neuronal cells. 1996

Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
Institute for Immunology, Kyoto University Faculty of Medicine, Japan.

Roles and mechanisms of N-methyl-D-aspartate (NMDA) receptors in glutamate neurotoxicity were investigated in cultures of NMDA receptor-deficient cortical neuronal cells. Mutant mice lacking a functional NMDA receptor were generated by gene targeting of the NR1 NMDA receptor subunit. Cortical neuronal cells prepared from wild-type NR1+/+, heterozygous NR1+/- and homozygous mutant NR1-/- mice at 15-17 days of gestation grew indistinguishably from each other. Brief exposures (5 min) of both NR1+/+ and NR1+/- neuronal cells to glutamate or NMDA, but not kainate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), resulted in widespread neuronal degeneration by the following day. In contrast, neither glutamate nor NMDA treatment caused neuronal degeneration in NR1-/- cells, indicating that NMDA receptors are responsible for rapidly triggered glutamate neurotoxicity. The above four compounds were all effective in inducing the death of NR1+/+ and NR1+/- neuronal cells after prolonged exposure (20-24 h). However, NMDA had no neurotoxic effects on NR1-/- cells, although the other three compounds wer neurotoxic with potencies comparable to those for NR1+/+ and NR1+/- cells. The AMPA and kainate receptors are thus sufficient for inducing slowly triggered glutamate neurotoxicity. Brief exposure of a mixed population of NR1+/+ and NR1-/- neuronal cells to NMDA selectively killed the NMDA receptor-expressing cells without any appreciable effects on neighbouring NMDA receptor-deficient cells. This finding further supports a direct and indispensable role for NMDA receptors in NMDA-evoked neuronal cell death.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid

Related Publications

Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
October 1989, Brain research,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
October 2005, Journal of vascular surgery,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
December 1990, Neuroscience letters,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
October 1989, Brain research,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
September 1999, Experimental neurology,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
February 2010, Neuroscience,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
June 2007, The Journal of biological chemistry,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
February 2003, Journal of neurophysiology,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
July 1988, The Journal of pharmacology and experimental therapeutics,
Y Tokita, and Y Bessho, and M Masu, and K Nakamura, and K Nakao, and M Katsuki, and S Nakanishi
August 1993, Archives of disease in childhood,
Copied contents to your clipboard!