Angiotensin II-induced tyrosine phosphorylation in mesangial and vascular smooth muscle cells. 1996

M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
Departments of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.

1. Angiotensin II (AngII)-induced, activation of phospholipase C (PLC) and Ca2+-dependent Cl- channels is an important signal transduction pathway for the regulation of vascular smooth muscle cell (VSMC) and glomerular mesangial cell contraction and growth. While AT receptors are traditionally thought to be G-protein coupled to the beta isoform of PLC, recent evidence suggests that in some tissues AT receptors may also activate the PLC-gamma isoform via tyrosine phosphorylation. 2. By western analysis, we identified PLC-gamma1 in the above cell types. We found that within 3 min of exposure to 10(-7) mol/L AngII, tyrosine phosphorylation of PLC-gamma1 was observed; however, peak response (>3-fold increase) occurred within 0.5 min. In addition, pre-incubation of these cells with the tyrosine kinase inhibitor genistein blocked the tyrosine phosphorylation of PLC-gamma1 by AngII. In contrast, preincubation with the tyrosine phosphatase inhibitor sodium vanadate increased the levels of tyrosine phosphorylation of PLC-gamma1. Similar results were found when intracellular levels of 1,4,5-IP3 were measured after AngII exposure. 3. By using patch clamp techniques on cultured rat mesangial cells exposed to AngII, we found that the release of 1,4,5-IP3-sensitive intracellular Ca2+ stores stimulated low conductance Cl- channels. Preincubation with genistein, abolished the usual 10-fold increase in Cl- channel activity observed with AngII. 4. Therefore, we conclude that in VSMC and glomerular mesangial cells (i) AngII transiently stimulates PLC activity via tyrosine phosphorylation of the gamma1 isoenzyme, (ii) tyrosine phosphorylation of PLC-gamma1 and production of 1,4,5-IP3 in response to AngII is dramatically inhibited by tyrosine kinase inhibition and stimulated by tyrosine phosphatase inhibition, (iii) activation of Ca2+-dependent Cl- channels by AngII-induced release of 1,4,5-IP3-dependent intracellular Ca2+ stores is also abolished by tyrosine kinase inhibition. In summary, this AngII-induced signal transduction cascade provides a possible mechanism for both the contractile and growth-stimulating effects of AngII on VSMC and glomerular mesangial cells.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
January 1993, Journal of vascular research,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
April 1994, The Journal of biological chemistry,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
July 1999, The Journal of biological chemistry,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
July 1991, FEBS letters,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
December 1993, The Journal of biological chemistry,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
June 1997, The Keio journal of medicine,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
June 2004, Circulation,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
May 1996, Hypertension (Dallas, Tex. : 1979),
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
January 1982, Blood vessels,
M B Marrero, and B Schieffer, and K E Bernstein, and B N Ling
August 2012, Regulatory peptides,
Copied contents to your clipboard!