Identification of the elongation factor Tu binding site on 70S E. coli ribosomes by chemical crosslinking. 1995

B Nag, and A E Johnson, and R R Traut
Department of Biological Chemistry, University of California, Davis 95616, USA.

Elongation factor Tu (EF-Tu), in the presence of Phe-tRNA, GMPPCP, and Poly (U), binds to 70S ribosomes at the recognition (R) site. In order to identify the ribosomal proteins adjacent to the EF-Tu occupying the R site, EF-Tu:Phe-tRNA:GMPPCP:ribosome complexes were crosslinked by modification with 2-iminothiolane and mild oxidation to form disulfide bridges between neighbouring proteins whose endogenous or introduced SH groups were appropriately located. The binding of Phe-tRNA to the ribosome was shown to be largely dependent on the presence of Poly(U). The total protein from the complexes was extracted and separated by two-dimensional gel electrophoresis by non-equilibrium pH gradient electrophoresis (NEpHGE) in the first dimension, followed by gradient SDS gel electrophoresis in the second dimension. Comparison of control samples crosslinked without Poly(U) to those crosslinked with Poly(U) present showed a single crosslinked complex in the region of the gel near EF-Tu. No cross-links in the vicinity of EF-Tu were visible in the absence of Poly(U). The crosslinked proteins in this region were recovered by electroelution, radiolabeled and their identity was confirmed by 2D gel electrophoresis and immunoblot analyses. Two major 50S ribosomal proteins, L7/L12 and L10 were found to be covalently linked to EF-Tu. The isolated crosslinked complex did not contain any protein from the 30S subunit. These results demonstrate that L7/L12 and L10 are the major, if not only, ribosomal protein cross-links to EF-Tu in the R site. In contrast to previous crosslinking results obtained by others, our results define a unique location for the EF-Tu binding site, one compatible with functional data and near that of the EF-G binding site on the ribosome.

UI MeSH Term Description Entries
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome

Related Publications

B Nag, and A E Johnson, and R R Traut
January 1983, Biochemistry,
B Nag, and A E Johnson, and R R Traut
July 1983, Nucleic acids research,
B Nag, and A E Johnson, and R R Traut
October 1992, Biochemistry international,
B Nag, and A E Johnson, and R R Traut
June 1981, Cell,
B Nag, and A E Johnson, and R R Traut
January 1984, FEBS letters,
B Nag, and A E Johnson, and R R Traut
May 1968, Igaku to seibutsugaku. Medicine and biology,
Copied contents to your clipboard!