Two ion currents activated by acetylcholine in the ARC muscle of Aplysia. 1996

J A Kozak, and K R Weiss, and V Brezina
Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA.

1. This work continues our examination of the electrophysiology and contractions of single fibers dissociated from a widely studied molluscan muscle, the accessory radula closer (ARC) muscle of Aplysia californica, aimed at understanding its excitation-contraction mechanisms and their modulation. 2. Extensive previous work has characterized a number of basal ion currents present in the fibers and effects of transmitters and peptide cotransmitters that modulate ARC-muscle contractions in vivo. Here we use current clamp, voltage clamp, and contraction measurements to examine the actions of acetylcholine (ACh), the transmitter that induces the contractions. 3. As in the whole ARC muscle, ACh depolarizes unclamped fibers maximally to about -25 mV where, no matter how much ACh is applied, the depolarization saturates. 4. The underlying ACh-activated current is in fact the sum of two quite distinct components, IACh,cat and IACh,Cl. 5. IACh,cat is itself a mixed current carried by cations (physiologically mainly by Na+, but to a significant degree also by Ca2+), reverses near +20 mV, rectifies inwardly, exhibits prominent voltage-dependent kinetics of activation with hyperpolarization, and is selectively blocked by hexamethonium. 6. In contrast, IACh,Cl is carried by Cl-, reverses near -60 mV, exhibits little rectification or voltage-dependent kinetics, is activated selectively by suberyldicholine, and is blocked by alpha-bungarotoxin. 7. Both currents activate fast when ACh is applied, desensitize relatively slowly in its presence, then deactivate fast. Both currents are activated at similar ACh concentrations, half-maximally at approximately 10 microM. Both currents also are activated by carbachol and propionylcholine and blocked by d-tubocurarine, bicuculline and paraoxon. Picrotoxin and atropine block IACh,cat better, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene 9-carboxylic acid IACh,Cl better. 8. The two currents are virtually identical to ACh-activated cationic (Na) and Cl currents that are ubiquitous in molluscan neurons. As has been proposed for the neuronal currents, IACh,cat resembles vertebrate neuronal nicotinic ACh-receptor (nAChR) currents, whereas IACh,Cl resembles vertebrate skeletal muscle nAChR currents. 9. Functionally, we believe that IACh,cat serves primarily to depolarize the ARC muscle to open voltage-activated L-type Ca channels, allow Ca2+ influx, and initiate contraction. Physiologically significant Ca2+ may also enter through the ACh,cat channels themselves. 10. By superimposing on IACh,cat, IACh,Cl brings the reversal potential of the combined current to around -25 mV and thereby sets a relatively negative upper limit to the ACh-induced depolarization. We propose that this is its physiological role. By limiting the depolarization, IACh,Cl limits the degree of activation of the Ca current and Ca2+ influx, and so prevents excessive contraction. More importantly, it moderates the voltage during contraction to a range where small voltage changes can finely grade contraction amplitude in this nonspiking muscle. 11. Indeed, in contraction experiments on the single fibers, there is an inverse correlation between the IACh,Cl/IACh,cat ratio and the magnitude of the ACh-induced depolarization and contraction. Furthermore, increased pharmacological activation of IACh,Cl depresses, and block of IACh,Cl enhances, both the depolarization and contraction. 12. Obligatory simultaneous coactivation of IACh,cat and IACh,Cl in the ARC muscle may be part of a peripheral control mechanism that automatically keeps the size of its contractions within behaviorally optimal limits.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

J A Kozak, and K R Weiss, and V Brezina
March 1995, Journal of neurophysiology,
J A Kozak, and K R Weiss, and V Brezina
August 1984, Developmental biology,
J A Kozak, and K R Weiss, and V Brezina
January 1983, Neirofiziologiia = Neurophysiology,
J A Kozak, and K R Weiss, and V Brezina
October 1999, Canadian journal of physiology and pharmacology,
J A Kozak, and K R Weiss, and V Brezina
April 1983, The Journal of general physiology,
J A Kozak, and K R Weiss, and V Brezina
August 1978, Nature,
Copied contents to your clipboard!