Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth. 1996

A R Palmer, and D Jiang, and D H Marshall
Medical Research Council Institute of Hearing Research, University of Nottingham, United Kingdom.

1. The responses of units in the ventral cochlear nucleus in anesthetized guinea pigs have been measured to best-frequency tones, noise bands geometrically centered around the unit best frequency, and noise bands asymmetrically positioned around the best frequency. 2. Each unit isolated was characterized using peristimulus time histograms (PSTHs) to best-frequency tones at 20 and 50 dB suprathreshold, frequency-intensity response areas and rate-versus-level functions in response to best-frequency tones and wideband noise. The data reported here are derived from full analyses of 5 chopper units and 17 onset units. The onsets were divided into onset-I (OnI), onset-L (OnL), and onset-C (OnC) by the criteria described by Winter and Palmer: the PSTHs of OnI units show only an onset response, OnL units respond with a single spike at onset followed by a low level of sustained activity, and OnC units have PSTHs with one to four onset peaks and low levels of sustained discharge. 3. In response to geometrically centered noise bands of constant spectral density, the discharge of chopper units and one OnI unit increased over a relatively narrow range of bandwidths, corresponding to the equivalent rectangular bandwidth calculated from their response area, and then became constant. In contrast, OnL and OnC units showed increases in discharge rate with noise bandwidth over very wide ranges of bandwidth. The growth of the discharge rate with noise bandwidth was approximately linear on double logarithmic axes and therefore could be described by a power function with an exponent of 0.37. This relation held even for noise levels near threshold. 4. When noise bands with constant spectral density (at the input to the earphone) were presented with one edge fixed at the unit's best frequency, the discharge rate of most chopper units and the one OnI unit increased over a narrow range of bandwidths and then became constant. This pattern was observed irrespective of whether the second edge of the noise was progressively increased above, or decreased below, the best frequency. For two of the chopper units, in which lateral inhibitory sidebands could be demonstrated, increasing the noise bandwidth led first to increases and then to decreases in the discharge rate as the noise energy impinged upon the sideband. The chopper units act like energy detectors with a filter corresponding to their single tone response area, but, for some units, with the addition of inhibitory sidebands. 5. For the OnL and OnC units, increasing the noise bandwidth above or below best frequency caused progressive increases in the discharge rate over wide ranges of bandwidth. These increases occurred even for low noise spectral densities. The growth in discharge rate for these onset units was well fitted at all spectral density levels by power functions: one above best frequency and one below. At levels of the noise 40 dB above the unit threshold, the point at which the discharge rate reached 90% of its maximum was, on average, about 2 octaves below best frequency and 1 octave above. For some onset units, changes in the discharge rate were seen as the noise bandwidth was varied over about 14 kHz, which is about one-third of the total frequency hearing range of the guinea pig. 6. The data for onset units is consistent with the hypothesis that onset units in the ventral cochlear nucleus achieve their precision in the temporal domain by integration of the inputs from auditory nerve fibers with a wide range of best frequencies. The range of frequency over which onset units integrate frequency matches that of the inhibitory input to dorsal cochlear nucleus neurons, suggesting a possible role as an inhibitory interneuron.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009622 Noise Any sound which is unwanted or interferes with HEARING other sounds. Noise Pollution,Noises,Pollution, Noise
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016057 Evoked Potentials, Auditory, Brain Stem Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES. Acoustic Evoked Brain Stem Potentials,Auditory Brain Stem Evoked Responses,Brain Stem Auditory Evoked Potentials,Evoked Responses, Auditory, Brain Stem,Acoustic Evoked Brain Stem Potential,Acoustic Evoked Brainstem Potential,Acoustic Evoked Brainstem Potentials,Auditory Brain Stem Evoked Response,Auditory Brain Stem Response,Auditory Brain Stem Responses,Auditory Brainstem Evoked Response,Auditory Brainstem Evoked Responses,Auditory Brainstem Responses,Brain Stem Auditory Evoked Potential,Brainstem Auditory Evoked Potential,Brainstem Auditory Evoked Potentials,Evoked Potential, Auditory, Brainstem,Evoked Potentials, Auditory, Brainstem,Evoked Response, Auditory, Brain Stem,Evoked Response, Auditory, Brainstem,Evoked Responses, Auditory, Brainstem,Auditory Brainstem Response,Brainstem Response, Auditory,Brainstem Responses, Auditory,Response, Auditory Brainstem,Responses, Auditory Brainstem
D017626 Cochlear Nucleus The brain stem nucleus that receives the central input from the cochlear nerve. The cochlear nucleus is located lateral and dorsolateral to the inferior cerebellar peduncles and is functionally divided into dorsal and ventral parts. It is tonotopically organized, performs the first stage of central auditory processing, and projects (directly or indirectly) to higher auditory areas including the superior olivary nuclei, the medial geniculi, the inferior colliculi, and the auditory cortex. Cochlear Nuclei,Nuclei, Cochlear,Nucleus, Cochlear

Related Publications

A R Palmer, and D Jiang, and D H Marshall
March 2010, Journal of neurophysiology,
A R Palmer, and D Jiang, and D H Marshall
March 2004, The Journal of the Acoustical Society of America,
A R Palmer, and D Jiang, and D H Marshall
May 2007, Journal of neurophysiology,
A R Palmer, and D Jiang, and D H Marshall
April 2010, Hearing research,
A R Palmer, and D Jiang, and D H Marshall
March 1978, Neuroscience letters,
A R Palmer, and D Jiang, and D H Marshall
March 1991, Journal of neurophysiology,
A R Palmer, and D Jiang, and D H Marshall
March 2005, The European journal of neuroscience,
Copied contents to your clipboard!