Circadian variation of EAAC1 glutamate transporter messenger RNA in the rat suprachiasmatic nuclei. 1996

F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
Division of Biomedical Sciences, King's College London, UK.

Using in situ hybridization, we examined temporal changes of the EAAC1 glutamate transporter mRNA within the suprachiasmatic nuclei (SCN) of rats in constant darkness. Film autoradiographs showed that the SCN and supraoptic nuclei (SON) contained a marked density of hybridization signal. Analysis of silver grains per cell in emulsion-dipped sections indicated that cellular expression of EAAC1 mRNA in the SCN was elevated during the latter part of the subjective night and at the beginning of the subjective day, with a peak at circadian time 23.1 as determined by cosinor analysis. The times at which EAAC1 mRNA is highest correspond to the time points at which extracellular glutamate, a neurotransmitter that putatively mediates photic entrainment, has been reported to be low within the SCN. The presence of EAAC1 mRNA in the SCN and SON may partially explain the resistance of these nuclei to glutamate receptor-mediated excitotoxins; furthermore, the raised level preceding subjective dawn in the SCN may ensure sub-toxic levels of extracellular glutamate at the onset of photic stimulation during the LD cycle. In contrast, cellular expression of EAAC1 mRNA in the cingulate cortex and reticular thalamus remained constant at all time points studied. These results suggest that there is circadian control of the EAAC1 mRNA by the clock intrinsic to the SCN.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D003624 Darkness The absence of light. Darknesses
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
July 1994, Brain research. Molecular brain research,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
April 1986, Science (New York, N.Y.),
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
December 1997, The American journal of physiology,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
August 2002, Brain research,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
January 1996, The American journal of physiology,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
October 2002, Cell and tissue research,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
February 1983, European journal of pharmacology,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
September 1978, Electroencephalography and clinical neurophysiology,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
August 2000, Proceedings of the National Academy of Sciences of the United States of America,
F R Cagampang, and M Rattray, and J F Powell, and N W Chong, and I C Campbell, and C W Coen
June 1983, Brain research,
Copied contents to your clipboard!