Cellular interactions in thymocyte development. 1996

G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
Department of Anatomy, Medical School, University of Birmingham, United Kingdom.

Interactions between stromal cells and thymocytes play a crucial role in T cell development. The thymic stroma is complex and consists of epithelial cells derived from the pharyngeal region during development, together with macrophages and dendritic cells of bone marrow origin. In addition, fibroblasts and matrix molecules permeate the whole framework. It is now apparent that these individual stromal components play specialized roles at different stages of T cell differentiation. Thus, at the early CD4-8- stage of development, T cell precursors require fibroblast as well as epithelial cell interactions. Later, at the CD4+8+ stage, as well as providing low avidity TCR/MHC-peptide interactions, thymic epithelial cells have been shown to possess unique properties essential for positive selection. Dendritic cells, on the other hand, are probably efficient mediators of negative selection, but they may not be solely responsible for this activity. Alongside the functional roles of stromal cells, considerable progress is being made in unraveling the nature of the signaling pathways involved in T cell development. Identification of the pre-T cell receptor (pre-TCR) and associated signaling molecules marks an important advance in understanding the mechanisms that control gene rearrangement and allelic exclusion. In addition, a better understanding of the signaling pathways that lead to positive selection on the one hand and negative selection on the other is beginning to emerge. Many issues remain unresolved, and some are discussed in this review. What, for example, is the nature of the chemotactic factor(s) that attract stem cells to the thymus? What is the molecular basis of the essential interactions between early thymocytes and fibroblasts, and early thymocytes and epithelial cells? What is special about cortical epithelial cells in supporting positive selection? These and other issues are ripe for analysis and can now be approached using a combination of modern molecular and cellular techniques.

UI MeSH Term Description Entries
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands

Related Publications

G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
August 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
January 1998, Advances in immunology,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
January 2015, Frontiers in immunology,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
December 2009, PloS one,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
February 2003, Immunity,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
December 1992, Seminars in immunology,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
January 2005, Journal of immunology (Baltimore, Md. : 1950),
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
January 1981, Advances in neurology,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
September 1970, The Journal of allergy,
G Anderson, and N C Moore, and J J Owen, and E J Jenkinson
October 1987, Human immunology,
Copied contents to your clipboard!