Glucose transport in amastigotes and promastigotes of Leishmania mexicana mexicana. 1995

R J Burchmore, and D T Hart
Division of Life Sciences, King's College London, UK.

Promastigotes and amastigotes of Leishmania mexicana mexicana transported 2-deoxy-D-glucose (2-DOG) by a saturable process with a Km of 24 +/- 3 microM and Vmax of 2.21 nmol min-1 (mg protein)-1 for the promastigote and a Km of 29 +/- 8 microM and Vmax of 0.13 nmol min-1 (mg protein)-1 for the amastigote stage. Amastigotes incorporated 2-DOG maximally at pH 5.0, while for promastigotes the optimum was at pH 7.0. Mid-log phase promastigotes were found to accumulate 2-DOG via a stereospecific carrier-mediated process which was competitively inhibited by D-glucose and D-mannose but not L-glucose. Transport was dependent upon temperature, with a Q10 in promastigotes of 1.83 and an optimum rate at 35 degrees C (+/- 4 degrees C) with an activation energy of 50.12 kJ mol-1. Stationary phase promastigotes accumulated 2-DOG at approximately twice the rate of mid-log phase promastigotes. Cytochalasin B, forskolin and phloretin were all found to inhibit human erythrocyte 2-DOG uptake but only cytochalasin B was found significantly to inhibit promastigote 2-DOG uptake. Interestingly, leishmanial 2-DOG uptake was inhibited by a series of membrane potential antagonists including the ionophore monensin, the H+ATPase inhibitor N, N'-dicyclohexylcarbodiimide (DCCD) and uncoupling agent carbonylcyanide-4-(triflouromethoxy) phenylhydrazone (FCCP), as well as, the tricyclic drugs chlomipramine and imipramine, but was insensitive to the Na+/K+ATPase inhibitor ouabain and the antitrypanosomal drugs Pentostam and Suramin. We therefore conclude that there are significant structural and mechanistic differences between the D-glucose uptake systems of Leishmania and the mammalian host to merit the inclusion of glucose transporters as putative targets for rational drug design.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007894 Leishmania mexicana A parasitic hemoflagellate of the subgenus Leishmania leishmania that infects man and animals including rodents. The Leishmania mexicana complex causes both cutaneous (LEISHMANIASIS, CUTANEOUS) and diffuse cutaneous leishmaniasis (LEISHMANIASIS, DIFFUSE CUTANEOUS) and includes the subspecies amazonensis, garnhami, mexicana, pifanoi, and venezuelensis. L. m. mexicana causes chiclero ulcer, a form of cutaneous leishmaniasis (LEISHMANIASIS, CUTANEOUS) in the New World. The sandfly, Lutzomyia, appears to be the vector. Leishmania (Leishmania) mexicana,Leishmania mexicana amazonensis,Leishmania mexicana mexicana,Leishmania leishmania mexicana,Leishmania leishmania mexicanas,Leishmania mexicana amazonenses,Leishmania mexicana mexicanas,Leishmania mexicanas,amazonenses, Leishmania mexicana,amazonensis, Leishmania mexicana,leishmania mexicana, Leishmania,mexicana amazonensis, Leishmania,mexicana mexicana, Leishmania,mexicana mexicanas, Leishmania,mexicana, Leishmania,mexicana, Leishmania leishmania,mexicana, Leishmania mexicana,mexicanas, Leishmania leishmania
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000981 Antiprotozoal Agents Substances that are destructive to protozoans. Schizonticides,Agents, Antiprotozoal

Related Publications

R J Burchmore, and D T Hart
November 1981, Molecular and biochemical parasitology,
R J Burchmore, and D T Hart
December 1982, Experimental parasitology,
R J Burchmore, and D T Hart
February 1983, The Journal of antimicrobial chemotherapy,
R J Burchmore, and D T Hart
April 1985, Experimental parasitology,
R J Burchmore, and D T Hart
June 1985, Experimental parasitology,
R J Burchmore, and D T Hart
October 1982, Experimental parasitology,
R J Burchmore, and D T Hart
January 1983, Transactions of the Royal Society of Tropical Medicine and Hygiene,
Copied contents to your clipboard!