Trophic and protective actions of brain-derived neurotrophic factor on striatal DARPP-32-containing neurons in vitro. 1995

N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
Department of Medical Cell Research, University of Lund, Sweden.

We have examined the effects of either brain-derived neurotrophic factor (BDNF), the BB-isoform of platelet-derived growth factor (PDGF-BB), or a combination of these growth factors on the survival and the morphological development of embryonic striatal neurons grown under serum-free culture conditions. Striatal neurons were identified using immunocytochemistry for "dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein with a molecular weight of 32 kilodalton" (DARPP-32). BDNF and PDGF-BB promoted the survival of DARPP-32-positive neurons, with the magnitude of their effects being comparable. A combination of these growth factors exerted no significant additive effects on cell survival. BDNF stimulated morphological differentiation of DARPP-32-containing neurons by increasing the length of neurites, the number of branching points on the neurites, and the soma area. By contrast, PDGF-BB increased the neurite length and the cell body area, but not the number of branching points. BDNF also protected striatal neurons from excitotoxicity induced by N-methyl-D-aspartate, whereas PDGF-BB had no effect under the same treatment conditions as those for BDNF. Thus, BDNF is trophic for striatal DARPP-32-containing neurons in vitro by enhancing the survival, morphological differentiation and resistance to excitotoxicity, and its mechanisms of action are probably different from those of PDGF-BB.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010750 Phosphoproteins Phosphoprotein
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus

Related Publications

N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
March 2007, The Journal of biological chemistry,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
December 2001, Journal of neurochemistry,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
September 1994, Developmental biology,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
June 2000, Brain research,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
April 1993, Journal of neurochemistry,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
February 2012, Experimental neurology,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
March 1993, Neuron,
N Nakao, and P Brundin, and K Funa, and O Lindvall, and P Odin
December 2015, Nature communications,
Copied contents to your clipboard!