Developmental expression of the immediate early gene EGR-1 mirrors the critical period in cat visual cortex. 1995

I V Kaplan, and Y Guo, and G D Mower
Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY 40292, USA.

Immediate early gene (IEG) expression in the central nervous system is thought to play a role in coupling extracellular stimulation with the transcriptional events responsible for long-term functional changes in neurons. The goal of the present study was to determine the postnatal developmental profile of EGR-1 protein (also termed zif268, Krox-24, NGFI-A) expression across the layers of cal visual cortex and relate it to the state of visual cortical development and plasticity. Using a polyclonal antibody, EGR-1 immunoreactivity was studied in animals of various postnatal ages (from 0.5 week to adult). In very young animals (0.5 weeks), EGR-1 positive cells were restricted to deep cortical layers (layer VI/Subplate). With the increasing age, EGR-1 immunoreactivity spread across layers of the visual cortex in an inside-outside manner, and by 5 weeks of age, EGR-1 protein was highly expressed in all layers. EGR-1 expression remained high until approximately 10 weeks of age and then gradually began to decline in layer IV with little change in supra- and infragranular layers. In adult animals, EGR-1 was located predominantly in the layers above and below layer IV. This pattern of EGR-1 expression in developing cat visual cortex has both temporal and laminar similarities with the development of visual cortical connectivity, with the development of orientation selective receptive field properties, and with the level of visual cortical plasticity, suggesting an involvement of EGR-1 expression in these processes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D016335 Zinc Fingers Motifs in DNA- and RNA-binding proteins whose amino acids are folded into a single structural unit around a zinc atom. In the classic zinc finger, one zinc atom is bound to two cysteines and two histidines. In between the cysteines and histidines are 12 residues which form a DNA binding fingertip. By variations in the composition of the sequences in the fingertip and the number and spacing of tandem repeats of the motif, zinc fingers can form a large number of different sequence specific binding sites. Zinc Finger DNA-Binding Domains,Zinc Finger Motifs,Finger, Zinc,Fingers, Zinc,Motif, Zinc Finger,Motifs, Zinc Finger,Zinc Finger,Zinc Finger DNA Binding Domains,Zinc Finger Motif
D017781 Genes, Immediate-Early Genes that show rapid and transient expression in the absence of de novo protein synthesis. The term was originally used exclusively for viral genes where immediate-early referred to transcription immediately following virus integration into the host cell. It is also used to describe cellular genes which are expressed immediately after resting cells are stimulated by extracellular signals such as growth factors and neurotransmitters. Immediate Early Gene,Immediate-Early Gene,Immediate-Early Genes,Early Gene, Immediate,Early Genes, Immediate,Gene, Immediate Early,Gene, Immediate-Early,Genes, Immediate Early,Immediate Early Genes

Related Publications

I V Kaplan, and Y Guo, and G D Mower
June 1992, Proceedings of the National Academy of Sciences of the United States of America,
I V Kaplan, and Y Guo, and G D Mower
September 2002, Brain research. Molecular brain research,
I V Kaplan, and Y Guo, and G D Mower
September 2004, Molecular and cellular neurosciences,
I V Kaplan, and Y Guo, and G D Mower
January 1992, Journal of neurophysiology,
I V Kaplan, and Y Guo, and G D Mower
February 1985, Journal of neurophysiology,
I V Kaplan, and Y Guo, and G D Mower
July 2022, Peer community journal,
I V Kaplan, and Y Guo, and G D Mower
May 2003, The European journal of neuroscience,
I V Kaplan, and Y Guo, and G D Mower
May 2006, The European journal of neuroscience,
I V Kaplan, and Y Guo, and G D Mower
August 1998, The Journal of experimental medicine,
I V Kaplan, and Y Guo, and G D Mower
November 1993, Brain research. Molecular brain research,
Copied contents to your clipboard!