Lack of a centrally-mediated antihypertensive effect following acute or chronic central treatment with AT1-receptor antagonists in spontaneously hypertensive rats. 1995

M W Bunting, and R E Widdop
Department of Pharmacology, Monash University, Clayton, Victoria, Australia.

1. The role of the central renin-angiotensin system in the pathogenesis of hypertension in spontaneously hypertensive rats (SHR) was examined following acute and chronic intracerebroventricular (i.c.v.) infusions of angiotensin1 (AT1) receptor antagonists. 2. Groups of SHR were chronically instrumented for acute i.c.v. administration of the AT1 receptor antagonists, losartan and CV-11974, on mean arterial blood pressure (MAP) and heart rate (HR). Other groups of SHR also had mini-osmotic pumps implanted for chronic i.c.v. infusion of CV-11974. 3. Initially both young (15-18 weeks, n = 8) and old (25-29 weeks, n = 9) SHR received acute i.c.v. injections of losartan (10 micrograms) while a third group of young SHR received CV-11974 (1 microgram, n = 6). In all three groups of SHR, MAP and HR did not change up to 24 h after antagonist injection. However, changes in MAP and HR in response to i.c.v. angiotensin II (AII, 100 ng) were abolished 15 min after administration of the AT1 receptor antagonists. These responses had returned to control levels after 3 h in both groups given losartan but were still significantly depressed at 24 h in the CV-11974-treated group. By contrast, responses to i.v. AII (25 ng) before and 1 h after administration of AT1 receptor antagonists were not significantly different. 4. For chronic studies, four groups of SHR received chronic i.c.v. infusion of either vehicle (n = 9) or CV-11974 (1, 5 and 100 micrograms kg-1 day-1) (n = 4, 7 and 8 respectively) for 4 days. Baseline cardiovascular parameters were monitored daily together with changes in MAP and HR in response to both i.c.v. and i.v. AII (100 ng and 50 ng respectively) and i.v. phenylephrine (3 micrograms). Responses to i.c.v. carbachol (5 micrograms) were also recorded on day 4 while baroreflex function was assessed between days 1-3. In SHR treated chronically with i.c.v. vehicle or CV-11974, at 1 or 5 micrograms kg-1 day-1, resting MAP and HR did not vary over the four day infusion period. However, SHR treated with 100 micrograms kg-1 day-1 CV-11974 had significantly lower MAP compared to vehicle-treated SHR. While there was some variation in resting HR, there were no differences between the drug-treated and vehicle-treated groups. Pressor responses following i.c.v. AII administration were slightly, but significantly, inhibited on days 3 and 4 in the low dose CV-11974-treated (1 microgram kg-1 day-1) SHR. However, these responses were abolished on all 4 days in the 5 and 100 micrograms kg-1 day-1 CV-11974-treated groups. By contrast, changes in MAP and HR following i.v. AII injection did not vary over the 4 day infusion between SHR treated with the 2 lowest doses of CV-11974 and the vehicle-treated group. However, in the high dose CV-11974-treated SHR (100 micrograms kg-1 day-1), the cardiovascular effects of AII were abolished. In addition, phenylephrine (i.v.) and carbachol (i.c.v.) induced changes in MAP and HR were not significantly different in all four treatment groups. Similarly, baroreflex function was unaffected by i.c.v. infusion of 100 micrograms kg-1 day-1 CV-11974, except for a significant fall in BP50 which paralleled the fall in resting MAP. 5. Collectively, these results indicate that acute and chronic central AT1 receptor antagonism does not lower MAP in conscious SHR in doses which only block central AII-induced pressor activity. Chronic central infusion of CV-11974 at sufficiently high doses will lower MAP, as has been reported by others, but not without the abolition of the peripheral effects of AII. Therefore it is most likely that peripheral AT1 receptor blockade contributes to the hypotensive action of CV-11974 under these conditions.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000959 Antihypertensive Agents Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS. Anti-Hypertensive,Anti-Hypertensive Agent,Anti-Hypertensive Drug,Antihypertensive,Antihypertensive Agent,Antihypertensive Drug,Anti-Hypertensive Agents,Anti-Hypertensive Drugs,Anti-Hypertensives,Antihypertensive Drugs,Antihypertensives,Agent, Anti-Hypertensive,Agent, Antihypertensive,Agents, Anti-Hypertensive,Agents, Antihypertensive,Anti Hypertensive,Anti Hypertensive Agent,Anti Hypertensive Agents,Anti Hypertensive Drug,Anti Hypertensive Drugs,Anti Hypertensives,Drug, Anti-Hypertensive,Drug, Antihypertensive,Drugs, Anti-Hypertensive,Drugs, Antihypertensive
D001562 Benzimidazoles Compounds with a BENZENE fused to IMIDAZOLES.
D001713 Biphenyl Compounds Whitish aromatic crystalline organic compounds made up of two conjoined BENZENE rings. Compounds, Biphenyl

Related Publications

M W Bunting, and R E Widdop
December 2007, British journal of pharmacology,
M W Bunting, and R E Widdop
March 2010, Journal of cardiovascular pharmacology,
M W Bunting, and R E Widdop
November 1997, Clinical and experimental hypertension (New York, N.Y. : 1993),
M W Bunting, and R E Widdop
July 1979, European journal of pharmacology,
M W Bunting, and R E Widdop
June 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
M W Bunting, and R E Widdop
June 1989, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!