Fine structure of the retina and pigment epithelium in the creek chub, Semotilus atromaculatus (Cyprinidae, Teleostei). 1996

S P Collin, and H B Collin, and M A Ali
Department of Psychology, University of Western Australia, Nedlands, Australia.

The structure of the light- and dark-adapted retina, the pigment epithelium and the choroid of the creek chub, Semotilus atromaculatus (Cyprinidae, Teleostei) is examined by light and electron microscopy. An extensive network of vitreal blood vessels emanating from the hyaloid artery enters the eye with the optic nerve and overlies the inner limiting membrane. This membrane closely apposes the fine protrusions of the Müller cell processes which traverse the entire retina, dividing the inner retina into alternating fascicles of ganglion cells and optic axons. The inner nuclear layer consists of bipolar, amacrine, Müller cell soma and two layers of horizontal cells. The outer plexiform layer possesses both rod spherules and cone pedicles. Each rod spherule consists of a single synaptic ribbon in either a triad or quadrad junctional arrangement within the invaginating terminal endings of the bipolar and horizontal cell processes. In contrast, cone pedicles possess multiple synaptic ribbons within their junctional complexes and, in the light-adapted state, the horizontal cell processes show spinule formation. Four photoreceptor types are identified on morphological criteria; unequal double cones, large single cones, small single cones and rods. All but the small single cones are capable of retinomotor responses. The rod to cone ratio is approximately 5:1 and the rods form two ill-defined rows in the light-adapted condition. The retinal pigment epithelium possesses two types of osmiophilic granules. These are bound within slender microvilli and migrate vitread to surround the photoreceptors in response to light. Bruch's membrane is trilaminar and the vascularised choroid consists of up to three layers of melanocytes. The endothelial borders of the choroidal blood vessels abutting the outer lamina of Bruch's membrane are fenestrated.

UI MeSH Term Description Entries
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017948 Retinal Rod Photoreceptor Cells Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal

Related Publications

S P Collin, and H B Collin, and M A Ali
November 2018, Journal of fish biology,
S P Collin, and H B Collin, and M A Ali
May 1967, The Journal of protozoology,
S P Collin, and H B Collin, and M A Ali
February 2024, G3 (Bethesda, Md.),
S P Collin, and H B Collin, and M A Ali
April 2006, The Journal of parasitology,
S P Collin, and H B Collin, and M A Ali
August 1994, Bulletin of environmental contamination and toxicology,
S P Collin, and H B Collin, and M A Ali
February 2009, Molecular ecology,
S P Collin, and H B Collin, and M A Ali
December 2022, Journal of evolutionary biology,
S P Collin, and H B Collin, and M A Ali
July 2010, The Journal of experimental biology,
S P Collin, and H B Collin, and M A Ali
January 1976, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!