Gap junctions couple astrocytes but not neurons in dissociated cultures of rat suprachiasmatic nucleus. 1996

D K Welsh, and S M Reppert
Laboratory of Developmental Chronobiology, Massachusetts General Hospital, Boston 02114, USA.

Individual neurons dissociated from rat suprachiasmatic nucleus can express independently phased circadian firing rhythms in culture. The phases of these rhythms are unperturbed by reversible blockade of neuronal firing lasting 2.5 days, indicating that multiple circadian clocks continue to operate in the absence of conventional synaptic transmission. The possibility remains, however, that these circadian rhythms might depend on some other form of intercellular communication. In the present study, a potential role for gap junctional coupling in SCN cultures was evaluated by introduction of the tracer molecule Neurobiotin into both neurons (n = 98) and astrocytes (n = 10), as well as by immunolabeling for specific connexins, the molecular components of gap junctions. Astrocytes were extensively coupled to each other by connexin 43-positive gap junctions, but no evidence was found for coupling of neurons to each other or to astrocytes. These data support the hypothesis that neurons expressing independently phased circadian rhythms in SCN cultures ('clock cells') are autonomous, single cell circadian oscillators, but do not exclude a role for glia in synchronizing neuronal clock cells in vivo.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017629 Gap Junctions Connections between cells which allow passage of small molecules and electric current. Gap junctions were first described anatomically as regions of close apposition between cells with a narrow (1-2 nm) gap between cell membranes. The variety in the properties of gap junctions is reflected in the number of CONNEXINS, the family of proteins which form the junctions. Gap Junction,Junction, Gap,Junctions, Gap

Related Publications

D K Welsh, and S M Reppert
May 2008, Journal of molecular neuroscience : MN,
D K Welsh, and S M Reppert
October 1993, Journal of neurophysiology,
D K Welsh, and S M Reppert
April 2024, The European journal of neuroscience,
D K Welsh, and S M Reppert
August 2016, Journal of biological rhythms,
D K Welsh, and S M Reppert
June 1996, The American journal of physiology,
D K Welsh, and S M Reppert
February 2002, American journal of physiology. Cell physiology,
D K Welsh, and S M Reppert
January 2006, Neuroscience,
D K Welsh, and S M Reppert
September 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
D K Welsh, and S M Reppert
September 2000, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
Copied contents to your clipboard!