Function and survival of intrasplenic islet autografts in dogs. 1996

M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
Department of Surgery, University of Leiden, Netherlands.

Successful transplantation of isolated islets of Langerhans has been reported in large mammals, including man, but metabolic control has not been well-established. We studied the glucose and islet hormone response to fasting, i.v. glucose bolus infusion, i.v. arginine bolus infusion during a 35-mmol/l hyperglycaemic clamp, mixed meals, and i.v. insulin-induced hypoglycaemia up to 3 years after intrasplenic islet autotransplantation in six pancreatectomised dogs. The individual postprandial insulinogenic index (ratio of 2-h postprandial insulin to glucose levels) at 1 month post-transplant, predicted (r = 0.99) the time to functional graft failure (6-175 weeks). Metabolic studies at 6 months post-transplant in four dogs demonstrated normal fasting glucose and hormone levels, except for reduced pancreatic polypeptide levels. Intravenous glucose and arginine-stimulated insulin were reduced to 15% of preoperative values. In contrast, postprandial normoinsulinaemia was observed--albeit with moderate hyperglycaemia (approximately 10 mmol/l). Postprandial glucagon and glucose-dependent insulinotropic polypeptide (GIP) had increased. Comparison of the post-transplant insulin responses to a meal and to intravenous challenges demonstrated maximal stimulation of the graft by the meal. Post-transplant pancreatic polypeptide responses to a meal and i.v. arginine were severely reduced, and no pancreatic polypeptide response to i.v. insulin-induced hypoglycaemia was observed--indicating absence of cholinergic reinnervation. Thus, glucose regulation and both the insulin secretory capacity and life expectancy of islet grafts were best documented by meal testing. Tentatively, a postprandial hyperglycaemia-enhanced incretin effect of glucose-dependent insulinotropic polypeptide and other gut hormones may account for the difference in the insulin response to i.v. glucose and a meal. Aside from the reduced insulin secretory capacity, both a deranged pulsatile delivery of insulin, hyperglucagonaemia, and pancreatic polypeptide deficiency may have been conducive to glucose intolerance.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010191 Pancreatic Polypeptide A 36-amino acid pancreatic hormone that is secreted mainly by endocrine cells found at the periphery of the ISLETS OF LANGERHANS and adjacent to cells containing SOMATOSTATIN and GLUCAGON. Pancreatic polypeptide (PP), when administered peripherally, can suppress gastric secretion, gastric emptying, pancreatic enzyme secretion, and appetite. A lack of pancreatic polypeptide (PP) has been associated with OBESITY in rats and mice. Pancreatic Polypeptide (PP),Pancreatic Polypeptide Hormone,Pancreatic Prohormone
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005260 Female Females
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral

Related Publications

M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
January 1989, Diabetes,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
June 1985, Surgery, gynecology & obstetrics,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
October 1990, Transplantation proceedings,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
December 1992, Transplantation proceedings,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
February 1995, Transplantation proceedings,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
January 1983, Current surgery,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
February 1982, Surgery,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
April 1982, The American journal of pathology,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
April 1990, Transplantation proceedings,
M P van der Burg, and O R Guicherit, and J B Jansen, and M Frölich, and C B Lamers, and H H Lemkes, and J A Bruijn, and H G Gooszen
February 1989, Transplantation proceedings,
Copied contents to your clipboard!