Pharmacological activity of DC-015, a novel potent and selective alpha 1-adrenoceptor antagonist. 1996

M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China.

The pharmacological activity of 3-((4-(2-methoxyphenyl)piperazin-1-yl)methyl)-2,3-dihydroimidaz o(1,2 -c)quinazolin-5(6H)-one (DC-015), a newly synthesized quinazoline derivative, was determined in rat isolated thoracic aorta and pressor responses were determined in spontaneously hypertensive rats (SHR). Experimental results indicated that DC-015 is an alpha 1-adrenoceptor-blocking agent in rat thoracic aorta as revealed by its competitive antagonism of phenylephrine-induced vasocontraction (pA2 = 10.54 +/- 0.55). These effects still persisted in denuded aorta. It was as potent as prazosin (pA2 = 10.04 +/- 0.63). At higher concentration (1.0 microM), DC-015 also expressed 5-hydroxytryptamine (5-HT) receptor competitive antagonism, but this 5-HT blocking effect was not found in the prazosin-administration group. [3H]Inositol monophosphate formation stimulated by phenylephrine (30 microM) in rat thoracic aorta was diminished by DC-015 (3 and 10 nM) and prazosin (10nM); whereas the cAMP content of rat thoracic aorta was not altered by DC-015 and prazosin. Furthermore, intravenous administration of DC-015 and prazosin (both at 0.01, 0.05 and 0.1 mg/kg-1) induced a dose-dependent reduction of mean arterial pressure which reached a maximal effect at 5 mm after injection and persisted over 2 h in SHR. A higher dose of DC-015 (0.1 mg/kg-1, i.v.) did not cause any significant changes in heart rate, whereas, the same dose of prazosin (0.1 mg/kg-1, i.v.) produced a decrease which seems to parallel the time course of the hypotensive response. We can conclude that the DC-015 is a potent, highly selective alpha 1-adrenoceptor antagonist in vascular smooth muscle.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats

Related Publications

M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
December 1992, The Journal of pharmacology and experimental therapeutics,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
July 1997, Yao xue xue bao = Acta pharmaceutica Sinica,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
June 1986, Naunyn-Schmiedeberg's archives of pharmacology,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
April 1988, Journal of cardiovascular pharmacology,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
December 1985, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
February 1985, British journal of pharmacology,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
July 1992, Japanese journal of pharmacology,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
August 1987, Naunyn-Schmiedeberg's archives of pharmacology,
M H Yen, and J R Sheu, and I H Peng, and Y M Lee, and J W Chern
February 1993, British journal of pharmacology,
Copied contents to your clipboard!