Hormones and the control of porphyrin biosynthesis and structure in the hamster harderian gland. 1996

A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
Department of Anatomy, Glasgow University, Scotland.

The hamster Harderian gland seems to present both an excellent model for the control of porphyrin biosynthesis and an unusually robust example of the interrelationship between structure and function. It has been known for some time that 1) the capacity for manufacturing and storing porphyrins and 2) gland histology and ultrastructure are controlled by androgens. Thus, in intact males as well as in gonadectomised animals of either sex treated with androgens, porphyrin synthesis by the Harderian gland is suppressed and the gland tubules characteristically possess two cell types, the cytoplasm of both containing polytubular complexes. By contrast, the Harderian glands of intact females and castrated males synthesise and store large amounts of protoporphyrin, while their tubules possess only one cell type which lacks a polytubular complexes. So overarching is the effect of androgens that they have been described as a "coarse tuning" effect on the gland. By contrast, the role of the ovary is both less dramatic and less well understood. In female hamsters, ovariectomy leads to degenerative changes in Harderian gland tubules and (probably) a release of stored porphyrin; at the same time there is a reduction in enzyme levels and new synthesis. The causative hormone in this "fine tuning" is unclear at present. There is now clear evidence that the Harderian gland is also controlled directly by pituitary hormones. In particular, the use of continuous infusion osmotic minipumps has allowed us to demonstrate not only 1) that the expected rise in porphyrins and feminisation of gland morphology does not occur in castrated males receiving the dopamine agonist bromocriptine, but that 2) the simultaneous administration of prolactin does permit these changes; furthermore, 3) the administration of prolactin alone increases porphyrin synthesis above the levels found in untreated castrates. Similarly, bromocriptine administration to ovariectomised females markedly reduces porphyrin synthesis and masculinises gland structure; again, this is reversed by the simultaneous administration of prolactin. Prolactin must therefore be seen as equipotent with androgens in determining gland structure and activity.

UI MeSH Term Description Entries
D008297 Male Males
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D011166 Porphyrins A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin. Porphyrin
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D001971 Bromocriptine A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion. 2-Bromoergocryptine,Bromocryptin,2-Bromo-alpha-ergocryptine,2-Bromo-alpha-ergokryptine,2-Bromoergocryptine Mesylate,2-Bromoergocryptine Methanesulfonate,2-Bromoergokryptine,Bromocriptin,Bromocriptine Mesylate,CB-154,Parlodel,2 Bromo alpha ergocryptine,2 Bromo alpha ergokryptine,2 Bromoergocryptine,2 Bromoergocryptine Mesylate,2 Bromoergocryptine Methanesulfonate,2 Bromoergokryptine,CB 154,CB154,Mesylate, 2-Bromoergocryptine,Mesylate, Bromocriptine,Methanesulfonate, 2-Bromoergocryptine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females
D006062 Gonadotropins Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities. Gonadotropin
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
January 1984, The International journal of biochemistry,
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
January 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
June 1977, Chemical & pharmaceutical bulletin,
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
October 1982, Journal of anatomy,
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
January 1975, Chemical & pharmaceutical bulletin,
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
July 1971, Archives of biochemistry and biophysics,
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
August 1990, Biochemical Society transactions,
A P Payne, and S W Shah, and F A Marr, and J McGadey, and G G Thompson, and M R Moore
October 1974, The Journal of endocrinology,
Copied contents to your clipboard!