Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes. 1996

J H Pizzonia, and B R Ransom, and C A Pappas
Department of Surgery (Neurosurgery), Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Astrocytes actively maintain their intracellular pH (pHi) more alkaline than expected by passive distribution of H+. Acid extruding transporters such as the amiloride-sensitive Na+/H+ exchanger (NHE) are necessary for pH regulation. Currently, four mammalian NHEs (NHE1-NHE4) have been cloned, with a fifth (NHE5) partially cloned. We attempted to determine which isoform(s) of NHE was present in cultured hippocampal astrocytes using amiloride sensitivity and immunospecificity as criteria. In the absence of HCO3-, amiloride blocked pHi recovery after an acid load with an IC50 of approximately 3.18 microM, similar to values reported for the amiloride-sensitive isoforms NHE1 and NHE2. Immunoblotting with a highly specific antibody for NHE1 identified a 100 kDa protein, indicating the presence of NHE1 in whole brain, hippocampus, and cultured hippocampal astrocytes. Further probing for an additional amiloride-sensitive NHE failed to detect evidence of the presence of NHE4. Surprisingly, application of the potent analog of amiloride, ethylisopropylamiloride (EIPA), caused a reversible alkalinization of pHi, suggesting the presence of an additional acid/base transport mechanism that is EIPA-sensitive.

UI MeSH Term Description Entries
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

J H Pizzonia, and B R Ransom, and C A Pappas
November 1986, The American journal of physiology,
J H Pizzonia, and B R Ransom, and C A Pappas
June 1995, Journal of neurochemistry,
J H Pizzonia, and B R Ransom, and C A Pappas
June 1992, The American journal of physiology,
J H Pizzonia, and B R Ransom, and C A Pappas
December 1994, Glia,
J H Pizzonia, and B R Ransom, and C A Pappas
December 1987, Thrombosis and haemostasis,
J H Pizzonia, and B R Ransom, and C A Pappas
March 1992, Pflugers Archiv : European journal of physiology,
J H Pizzonia, and B R Ransom, and C A Pappas
January 1985, Society of General Physiologists series,
J H Pizzonia, and B R Ransom, and C A Pappas
March 2001, American journal of physiology. Renal physiology,
J H Pizzonia, and B R Ransom, and C A Pappas
May 1990, The Journal of biological chemistry,
J H Pizzonia, and B R Ransom, and C A Pappas
April 1987, The American journal of physiology,
Copied contents to your clipboard!