Distribution of nitric oxide synthase-containing ganglionic neuronal somata and postganglionic fibers in the rat kidney. 1996

L Liu, and G L Liu, and L Barajas
Department of Pathology, Harbor-UCLA Medical Center, Torrance 90509, USA.

Nitric oxide synthase (NOS)-immunoreactive neurons were identified in the rat kidney by using an antibody against type Ia NOS and the avidin-biotin complex immunoperoxidase method in whole kidneys examined in 100 microns serial sections. The histochemical method for demonstration of the nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) was also used to characterize NOS-containing neurons. All somata showing NOS immunoreactivity also displayed NADPH-d activity. The greatest number of neuronal somata were observed in groups at the wall of the renal pelvis and in the angular space formed by the pole of the renal parenchyma and renal pelvic wall. They were also seen at the renal hilus close to the renal artery and along the interlobar vasculature. The size of the neuronal somata in the 35-day-old rat ranged from 13.6 to 34.8 microns, with a mean size of 21.52 +/- 4.81 microns. Seventy percent, however, ranged in size from 17.8 to 26.8 microns. The shape of the neuronal somata also varied, with the majority having an ovoid or round shape. The distribution of the postganglionic fibers was investigated by means of the camera lucida. Postganglionic fibers projected into the wall of the renal pelvis and/or to the interlobar arteries extending to the arcuate arteries and to the beginning of the afferent arterioles. The NOS-immunoreactive neurons may have a vasodilator and relaxing function on the renal pelvic wall and vasculature. In addition, the presence of NOS-containing nerve fibers in nerve bundles, which are known to have predominantly vasomotor and sensory fibers, suggest that they may have a possible modulatory role on renal neural function.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017779 Sympathetic Fibers, Postganglionic Nerve fibers which project from sympathetic ganglia to synapses on target organs. Sympathetic postganglionic fibers use norepinephrine as transmitter, except for those innervating eccrine sweat glands (and possibly some blood vessels) which use acetylcholine. They may also release peptide cotransmitters. Fiber, Postganglionic Sympathetic,Fibers, Postganglionic Sympathetic,Postganglionic Sympathetic Fiber,Postganglionic Sympathetic Fibers,Sympathetic Fiber, Postganglionic

Related Publications

L Liu, and G L Liu, and L Barajas
September 1999, Asian journal of andrology,
L Liu, and G L Liu, and L Barajas
January 2002, Methods in enzymology,
L Liu, and G L Liu, and L Barajas
April 1997, Neuroscience letters,
L Liu, and G L Liu, and L Barajas
April 1999, Journal of the American Society of Nephrology : JASN,
L Liu, and G L Liu, and L Barajas
March 1997, The Journal of urology,
L Liu, and G L Liu, and L Barajas
September 1997, Acta oto-laryngologica,
L Liu, and G L Liu, and L Barajas
September 1997, Neuroscience letters,
L Liu, and G L Liu, and L Barajas
September 1997, Biochemical and biophysical research communications,
L Liu, and G L Liu, and L Barajas
May 2000, American journal of physiology. Renal physiology,
Copied contents to your clipboard!