Localized 2D J-resolved 1H MR spectroscopy of human brain tumors in vivo. 1996

M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
Department of Medical Physics, University of Wisconsin-Madison, USA.

Application of two-dimensional (2D) J-resolved MR spectroscopy, fully localized in three dimensions to monitor the metabolites in human brain tumors in vivo on a whole body MR scanner is presented. A modified PRESS sequence with [90 degrees - 180 degrees - t1/2 - 180 degrees - t1/ 2-acquisition] was used for voxel localization (2D J point-resolved spectroscopy [PRESS]); chemical shift selective (CHESS) sequence was used for suppression of water. The incremental delay (t1/2) added to the intervals before and after the last slice-selective 180 degrees RF pulse allowed the monitoring of the J-evolution in a localized 2D NMR spectrum. The addition of the second frequency dimension in 2D J-resolved spectroscopy to encode the indirect spin-spin coupling allowed the visualization of lactate peaks not observed in the 1D MR spectrum because of severe overlap with lipid peaks. 2D spectra of a two-layer phantom with 100 mM alanine and corn oil and also from three patients with tumors are presented here. The 2D spectra show that the J-coupled lactate peaks could be separated even when the lipids peaks severely overlap.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009364 Neoplasm Recurrence, Local The local recurrence of a neoplasm following treatment. It arises from microscopic cells of the original neoplasm that have escaped therapeutic intervention and later become clinically visible at the original site. Local Neoplasm Recurrence,Local Neoplasm Recurrences,Locoregional Neoplasm Recurrence,Neoplasm Recurrence, Locoregional,Neoplasm Recurrences, Local,Recurrence, Local Neoplasm,Recurrence, Locoregional Neoplasm,Recurrences, Local Neoplasm,Locoregional Neoplasm Recurrences,Neoplasm Recurrences, Locoregional,Recurrences, Locoregional Neoplasm
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas

Related Publications

M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
November 1989, Magnetic resonance in medicine,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
September 2013, NMR in biomedicine,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
May 2004, NeuroImage,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
May 1998, AJR. American journal of roentgenology,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
January 1986, Magnetic resonance imaging,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
March 1993, Radiology,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
January 2013, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
January 2006, Korean journal of radiology,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
July 1995, Journal of neuroimaging : official journal of the American Society of Neuroimaging,
M A Thomas, and L N Ryner, and M P Mehta, and P A Turski, and J A Sorenson
October 2018, Magnetic resonance in chemistry : MRC,
Copied contents to your clipboard!