Developmental Modulation of a beta myosin heavy chain promoter-driven transgene. 1996

S Knotts, and A Sánchez, and H Rindt, and J Robbins
Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.

The molecular mechanisms underlying heart and skeletal muscle-specific gene expression during development and in response to physioloic stimuli are largely unknown. Using a novel immunohistochemical procedure to detect chloramphenicol acetyltransferase (CAT), we have investigated, in vivo at high resolution, the ability of cis-acting DNA sequences within the 5' flanking region of the mouse beta myosin heavy chain (MyHC) gene (beta-MyHC) to direct appropriate gene expression throughout development. A 5.6-kb fragment 5' to the beta-MyHC's transcriptional start site was linked to the reporter gene encoding CAT (cat) and used to generate transgenic mice. The anti-CAT in situ assay described in this report allowed us to define the ability of the promoter fragment to direct appropriate temporal, tissue- and muscle fiber type-specific gene expression throughout early development. In skeletal muscles, the transgene expression profile mimics the endogenous beta-myHC's at all developmental stages and is appropriately restricted to slow (type I) skeletal fibers in the adult. Surprisingly, transgene expression was detected in both the atria and ventricles during embryonic and fetal development, indicating that ventricular specification involves elements outside the 5.6-kb fragment. In contrast, in the adult, hypothyroid conditions led to transgene induction specifically in the ventricles, suggesting that distinct regulatory mechanisms control fetal versus adult beta-MyHC expression in the cardiac compartment.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S Knotts, and A Sánchez, and H Rindt, and J Robbins
June 1989, The Journal of biological chemistry,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
March 1993, The Journal of biological chemistry,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
September 2015, Journal of molecular and cellular cardiology,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
March 1996, Endocrinology,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
June 2007, American journal of physiology. Heart and circulatory physiology,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
March 1994, Biochemical and biophysical research communications,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
March 2009, Circulation,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
December 2002, American journal of physiology. Cell physiology,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
July 2009, Developmental dynamics : an official publication of the American Association of Anatomists,
S Knotts, and A Sánchez, and H Rindt, and J Robbins
March 1998, The American journal of physiology,
Copied contents to your clipboard!