Modulation of muscle contractility during fatigue and recovery by ATP sensitive potassium channel. 1996

J M Renaud, and A Gramolini, and P Light, and A Comtois
Department of Physiology, University of Ottawa, Ontario, Canada.

The activity of ATP-sensitive potassium channels of skeletal muscle is controlled by changes in the bioenergetic state of the cell. These channels are inactive in unfatigued muscle and become activated during fatigue. It has been postulated that ATP-sensitive potassium channels shorten the action potential duration, increase the potassium efflux and contribute to the decrease in force during fatigue. Although blocking ATP-sensitive potassium channels during fatigue prolongs the action potential duration and decreases the potassium efflux as expected, it does not affect the rate of fatigue development as observed from the decrease in tetanic force. Even though such results are not consistent with the hypothesis that ATP-sensitive potassium channels contribute to the decrease in force during fatigue, a reduced capacity of skeletal muscles to recover their tetanic force following fatigue is also observed when ATP-sensitive potassium channels are blocked during fatigue, suggesting that these channels have a myoprotective effect. It is thus possible that removing this myoprotection during fatigue results in deleterious effects which counteract the expected slower decrease in force. However ATP-sensitive potassium channel openers also fall to affect the rate of fatigue development. Therefore, the results obtained so far do not support the hypothesis that ATP-sensitive potassium channels contribute to the decrease in force during fatigue.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D018763 Muscle Fatigue A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle. Fatigue, Muscle,Muscular Fatigue,Fatigue, Muscular

Related Publications

J M Renaud, and A Gramolini, and P Light, and A Comtois
August 1993, Cardiovascular drugs and therapy,
J M Renaud, and A Gramolini, and P Light, and A Comtois
April 1998, The Annals of thoracic surgery,
J M Renaud, and A Gramolini, and P Light, and A Comtois
March 1995, The American journal of physiology,
J M Renaud, and A Gramolini, and P Light, and A Comtois
January 1994, Cardiovascular research,
J M Renaud, and A Gramolini, and P Light, and A Comtois
June 1994, Cardiovascular research,
J M Renaud, and A Gramolini, and P Light, and A Comtois
January 1990, Pflugers Archiv : European journal of physiology,
J M Renaud, and A Gramolini, and P Light, and A Comtois
March 2001, The Journal of biological chemistry,
J M Renaud, and A Gramolini, and P Light, and A Comtois
January 1994, Journal of cardiovascular pharmacology,
J M Renaud, and A Gramolini, and P Light, and A Comtois
November 1992, Cardiovascular research,
Copied contents to your clipboard!