Developmental regulation of cation pumps in skeletal and cardiac muscle. 1996

M J Dauncey, and A P Harrison
Department of Cellular Physiology, Babraham Institute, Cambridge, UK.

The prenatal and early postnatal periods are critical stages during which long-term development can be affected. For example, retardation of growth during these periods is closely linked to the occurrence of adult degenerative diseases. Appropriate development of muscle is essential for numerous functions, including movement, posture, thermogenesis, breathing and maintenance of the circulation. Defects in normal muscle development could thus impair any of these functions in the neonate and may also have long-term consequences for the health of the individual. Central to normal muscle structure and function is the appropriate development not only of the sarcomeric proteins but also of the sarcolemma, transverse-tubules, sarcoplasmic reticulum and associated membrane-bound ATPases. Long-term regulation of these ATPases is by changes in their concentration, whereas short-term regulation is mediated by alterations in enzyme activity. This review focuses on changes in total concentrations of Na+, K+, and Ca(2+)-ATPases during prenatal and postnatal life, in functionally diverse muscles of mammalian species born at different stages of maturity. Both these cation pumps belong to multigene families and changes in relative abundance of their specific isoforms are also considered because they may have important consequences for contractile performance during distinct stages of development. Finally, potential regulatory mechanisms which alter markedly during normal ontogeny are discussed. These include intrinsic factors such as hormones and contractile activity, extrinsic factors such as nutrition and environmental temperature, and interactions between these variables which are known to be especially important during postnatal development.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016623 Ion Pumps A general class of integral membrane proteins that transport ions across a membrane against an electrochemical gradient. Ion Pump,Pump, Ion,Pumps, Ion
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

M J Dauncey, and A P Harrison
June 2005, American journal of physiology. Endocrinology and metabolism,
M J Dauncey, and A P Harrison
March 1998, Acta physiologica Scandinavica,
M J Dauncey, and A P Harrison
February 1996, The American journal of physiology,
M J Dauncey, and A P Harrison
January 2011, Artificial organs,
M J Dauncey, and A P Harrison
January 1991, The Biochemical journal,
M J Dauncey, and A P Harrison
January 1997, Journal of neurocytology,
M J Dauncey, and A P Harrison
June 2012, Journal of muscle research and cell motility,
M J Dauncey, and A P Harrison
January 2008, Vitamins and hormones,
M J Dauncey, and A P Harrison
December 1967, Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften,
Copied contents to your clipboard!